論文の概要: Visualization for Histopathology Images using Graph Convolutional Neural
Networks
- arxiv url: http://arxiv.org/abs/2006.09464v1
- Date: Tue, 16 Jun 2020 19:14:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 21:49:23.812779
- Title: Visualization for Histopathology Images using Graph Convolutional Neural
Networks
- Title(参考訳): グラフ畳み込みニューラルネットワークを用いた病理画像の可視化
- Authors: Mookund Sureka, Abhijeet Patil, Deepak Anand, Amit Sethi
- Abstract要約: 我々は、組織組織を核のグラフとしてモデル化するアプローチを採用し、疾患診断のためのグラフ畳み込みネットワークフレームワークを開発した。
我々は,浸潤性乳癌とin-situ性乳癌の鑑別を訓練し,Gleason 3, 4前立腺癌は解釈可能なビジュアルマップを生成する。
- 参考スコア(独自算出の注目度): 1.8939984161954087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increase in the use of deep learning for computer-aided diagnosis in
medical images, the criticism of the black-box nature of the deep learning
models is also on the rise. The medical community needs interpretable models
for both due diligence and advancing the understanding of disease and treatment
mechanisms. In histology, in particular, while there is rich detail available
at the cellular level and that of spatial relationships between cells, it is
difficult to modify convolutional neural networks to point out the relevant
visual features. We adopt an approach to model histology tissue as a graph of
nuclei and develop a graph convolutional network framework based on attention
mechanism and node occlusion for disease diagnosis. The proposed method
highlights the relative contribution of each cell nucleus in the whole-slide
image. Our visualization of such networks trained to distinguish between
invasive and in-situ breast cancers, and Gleason 3 and 4 prostate cancers
generate interpretable visual maps that correspond well with our understanding
of the structures that are important to experts for their diagnosis.
- Abstract(参考訳): 医用画像におけるコンピュータ支援診断におけるディープラーニングの利用の増加に伴い、深層学習モデルのブラックボックス性に対する批判も高まっている。
医療コミュニティは、デュー・ディリジェンスと、疾患や治療機構の理解を深めるための解釈可能なモデルが必要である。
特に組織学では、細胞レベルでの詳細な情報や細胞間の空間的関係性は豊富であるが、畳み込みニューラルネットワークを改変して関連する視覚特徴を指摘することは困難である。
病理組織を核のグラフとしてモデル化するアプローチを採用し,注意機構とリンパ節閉塞を基盤としたグラフ畳み込みネットワークフレームワークを開発した。
提案手法では,全スライド画像における各細胞核の相対的寄与を強調する。
我々は,浸潤性乳癌とin-situ性乳癌の鑑別を訓練し,Gleason 3, 4前立腺癌は診断において重要な構造を理解するのとよく一致する解釈可能な視覚マップを生成する。
関連論文リスト
- Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
論文 参考訳(メタデータ) (2024-04-11T09:07:40Z) - Digital Histopathology with Graph Neural Networks: Concepts and
Explanations for Clinicians [54.136225756724755]
GCExplainerとLogic Explained Networksを用いて,グラフニューラルネットワークのグローバルな説明を行う。
乳がんのH&Eスライドのトレーニングにより、臨床医に説明可能な信頼できるAIツールを提供することで、有望な結果を示す。
論文 参考訳(メタデータ) (2023-12-04T00:20:50Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
本稿では,グラフサンプリングにおける集約を利用したアグリゲータ正規化グラフ畳み込みネットワークを提案する。
提案モデルは,画像特徴と非画像特徴の両方をグラフノードとエッジに組み込むことで,識別グラフノード表現を学習する。
我々は、自閉症脳画像データ交換(ABIDE)とアルツハイマー病神経イメージングイニシアチブ(ADNI)という2つの大きなデータセット上の最近のベースライン手法と比較して、我々のモデルをベンチマークした。
論文 参考訳(メタデータ) (2023-11-13T14:36:29Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Deep Learning Generates Synthetic Cancer Histology for Explainability
and Education [37.13457398561086]
条件付き生成逆数ネットワーク(英: Conditional Generative Adversarial Network、cGAN)は、合成画像を生成するAIモデルである。
本稿では,cGANを用いた分子サブタイプ腫瘍の分類訓練モデルについて述べる。
腫瘍の病理組織学的所見に対するヒトの理解を増強し, 向上させることが, 明確で直感的なcGANの可視化に有効であることを示す。
論文 参考訳(メタデータ) (2022-11-12T00:14:57Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
我々は,皮質表面の深層学習のためのフレームワークを開発した。
まず,表面データに摂動に基づくアプローチを適用した。
我々の説明可能性フレームワークは,重要な特徴とその空間的位置を識別できるだけでなく,信頼性と有効性も示している。
論文 参考訳(メタデータ) (2022-03-15T23:16:49Z) - Graph Convolutional Networks for Multi-modality Medical Imaging:
Methods, Architectures, and Clinical Applications [13.940158397866625]
グラフ畳み込みネットワーク(GCN)の開発は、医療画像解析における新たな研究の波を生み出した。
GCNの能力は、定量的疾患の理解、モニタリング、診断の改善を目標に、医療画像解析における新たな研究の波を生み出している。
論文 参考訳(メタデータ) (2022-02-17T22:03:59Z) - A Survey on Graph-Based Deep Learning for Computational Histopathology [36.58189530598098]
我々は、デジタル病理と生検画像パッチの分析に機械学習と深層学習の利用が急速に拡大しているのを目撃した。
畳み込みニューラルネットワークを用いたパッチワイド機能に関する従来の学習は、グローバルなコンテキスト情報をキャプチャしようとする際のモデルを制限する。
本稿では,グラフに基づく深層学習の概念的基盤を提供し,腫瘍の局在と分類,腫瘍浸潤とステージング,画像検索,生存予測の現在の成功について論じる。
論文 参考訳(メタデータ) (2021-07-01T07:50:35Z) - CS2-Net: Deep Learning Segmentation of Curvilinear Structures in Medical
Imaging [90.78899127463445]
カービリニア構造のセグメンテーションのための汎用的で統一的な畳み込みニューラルネットワークを提案する。
エンコーダとデコーダに自己アテンション機構を含む新しいカービリニア構造分割ネットワーク(CS2-Net)を導入する。
論文 参考訳(メタデータ) (2020-10-15T03:06:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。