Learning Graph Neural Networks with Positive and Unlabeled Nodes
- URL: http://arxiv.org/abs/2103.04683v1
- Date: Mon, 8 Mar 2021 11:43:37 GMT
- Title: Learning Graph Neural Networks with Positive and Unlabeled Nodes
- Authors: Man Wu, Shirui Pan, Lan Du, Xingquan Zhu
- Abstract summary: Graph neural networks (GNNs) are important tools for transductive learning tasks, such as node classification in graphs.
Most GNN models aggregate information from short distances in each round, and fail to capture long distance relationship in graphs.
In this paper, we propose a novel graph neural network framework, long-short distance aggregation networks (LSDAN) to overcome these limitations.
- Score: 34.903471348798725
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) are important tools for transductive learning
tasks, such as node classification in graphs, due to their expressive power in
capturing complex interdependency between nodes. To enable graph neural network
learning, existing works typically assume that labeled nodes, from two or
multiple classes, are provided, so that a discriminative classifier can be
learned from the labeled data. In reality, this assumption might be too
restrictive for applications, as users may only provide labels of interest in a
single class for a small number of nodes. In addition, most GNN models only
aggregate information from short distances (e.g., 1-hop neighbors) in each
round, and fail to capture long distance relationship in graphs. In this paper,
we propose a novel graph neural network framework, long-short distance
aggregation networks (LSDAN), to overcome these limitations. By generating
multiple graphs at different distance levels, based on the adjacency matrix, we
develop a long-short distance attention model to model these graphs. The direct
neighbors are captured via a short-distance attention mechanism, and neighbors
with long distance are captured by a long distance attention mechanism. Two
novel risk estimators are further employed to aggregate long-short-distance
networks, for PU learning and the loss is back-propagated for model learning.
Experimental results on real-world datasets demonstrate the effectiveness of
our algorithm.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Learning on Graphs with Out-of-Distribution Nodes [33.141867473074264]
Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs.
This work defines the problem of graph learning with out-of-distribution nodes.
We propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes.
arXiv Detail & Related papers (2023-08-13T08:10:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
Graph representation learning methods generate numerical vector representations for the nodes in a network.
In this work, we propose Inferential SIR-GN, a model which is pre-trained on random graphs, then computes node representations rapidly.
We demonstrate that the model is able to capture node's structural role information, and show excellent performance at node and graph classification tasks, on unseen networks.
arXiv Detail & Related papers (2021-11-08T20:56:37Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
We study hierarchical message passing models that leverage a multi-resolution representation of a given graph.
This facilitates learning of features that span large receptive fields without loss of local information.
We introduce Hierarchical Graph Net (HGNet), which for any two connected nodes guarantees existence of message-passing paths of at most logarithmic length.
arXiv Detail & Related papers (2021-07-15T16:24:22Z) - Isometric Graph Neural Networks [5.306334746787569]
We propose a technique to learn Isometric Graph Neural Networks (IGNN)
IGNN requires changing the input representation space and loss function to enable any GNN algorithm to generate representations that reflect distances between nodes.
We observe a consistent and substantial improvement as high as 400% in Kendall's Tau (KT)
arXiv Detail & Related papers (2020-06-16T22:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.