論文の概要: Diverse Rule Sets
- arxiv url: http://arxiv.org/abs/2006.09890v1
- Date: Wed, 17 Jun 2020 14:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 19:24:46.448680
- Title: Diverse Rule Sets
- Title(参考訳): 多様なルールセット
- Authors: Guangyi Zhang and Aristides Gionis
- Abstract要約: ルールベースのシステムは、直感的なif-then表現のためにルネッサンスを経験しています。
本稿では,ルール間の重なり合いを最適化することで,多様なルールセットを推定する新しい手法を提案する。
次に、高い差別性を持ち、重複が少ない規則をサンプリングする効率的なランダム化アルゴリズムを考案する。
- 参考スコア(独自算出の注目度): 20.170305081348328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While machine-learning models are flourishing and transforming many aspects
of everyday life, the inability of humans to understand complex models poses
difficulties for these models to be fully trusted and embraced. Thus,
interpretability of models has been recognized as an equally important quality
as their predictive power. In particular, rule-based systems are experiencing a
renaissance owing to their intuitive if-then representation.
However, simply being rule-based does not ensure interpretability. For
example, overlapped rules spawn ambiguity and hinder interpretation. Here we
propose a novel approach of inferring diverse rule sets, by optimizing small
overlap among decision rules with a 2-approximation guarantee under the
framework of Max-Sum diversification. We formulate the problem as maximizing a
weighted sum of discriminative quality and diversity of a rule set.
In order to overcome an exponential-size search space of association rules,
we investigate several natural options for a small candidate set of
high-quality rules, including frequent and accurate rules, and examine their
hardness. Leveraging the special structure in our formulation, we then devise
an efficient randomized algorithm, which samples rules that are highly
discriminative and have small overlap. The proposed sampling algorithm
analytically targets a distribution of rules that is tailored to our objective.
We demonstrate the superior predictive power and interpretability of our
model with a comprehensive empirical study against strong baselines.
- Abstract(参考訳): 機械学習モデルは日常生活の多くの側面を繁栄させ、変化させているが、複雑なモデルを理解することができないことは、これらのモデルを完全に信頼し、受け入れることが困難である。
したがって、モデルの解釈可能性も予測力として等しく重要な品質として認識されている。
特にルールベースのシステムは、直感的なif-then表現のためにルネッサンスを経験している。
しかし、単にルールベースであることは解釈可能性を保証するものではない。
例えば、重複した規則は曖昧さを生じさせ、解釈を妨げる。
本稿では,最大和の多様化の枠組みにおいて,決定規則間の重なりを2近似保証で最適化し,多様規則集合を推定する新しい手法を提案する。
この問題を、識別的品質とルールセットの多様性の重み付け和を最大化する問題として定式化する。
関連ルールの指数的規模の探索空間を克服するために,頻繁かつ正確な規則を含む,小規模な規則候補集合に対するいくつかの自然な選択肢を調査し,それらの硬さについて検討する。
提案手法では,特殊構造を活用し,識別性が高く重なりが小さいルールをサンプルする効率的なランダム化アルゴリズムを考案する。
提案するサンプリングアルゴリズムは,目的に合わせたルールの分布を解析的に対象とする。
我々は,強力なベースラインに対する包括的実証研究を行い,モデルの優れた予測力と解釈可能性を示す。
関連論文リスト
- A Scalable Matrix Visualization for Understanding Tree Ensemble Classifiers [20.416696003269674]
本稿では,数万のルールを含む木アンサンブル分類法を説明するために,拡張性のある視覚解析手法を提案する。
我々は,これらのルールを階層レベルで優先順位付けするための,異常バイアスモデル削減手法を開発した。
本手法は,共通ルールと異常ルールの両方を深く理解し,包括性を犠牲にすることなく解釈性を向上させる。
論文 参考訳(メタデータ) (2024-09-05T01:48:11Z) - Probabilistic Truly Unordered Rule Sets [4.169915659794567]
真に順序のない規則集合に対するTURSを提案する。
我々はルールセットの確率的特性を利用して、類似した確率的出力を持つ場合のみ規則が重複することを許すという直観を生かしている。
我々は,幅広いルールベースの手法に対してベンチマークを行い,モデルの複雑さを低くし,高い競争力のある予測性能を持つルールセットを学習できることを実証した。
論文 参考訳(メタデータ) (2024-01-18T12:03:19Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - On Regularization and Inference with Label Constraints [62.60903248392479]
機械学習パイプラインにおけるラベル制約を符号化するための2つの戦略、制約付き正規化、制約付き推論を比較した。
正規化については、制約に不整合なモデルを前置することで一般化ギャップを狭めることを示す。
制約付き推論では、モデルの違反を訂正することで人口リスクを低減し、それによってその違反を有利にすることを示す。
論文 参考訳(メタデータ) (2023-07-08T03:39:22Z) - Learning Locally Interpretable Rule Ensemble [2.512827436728378]
ルールアンサンブルは重み付き規則の線形結合に基づく解釈可能なモデルである。
本稿では,正確かつ解釈可能なルールアンサンブルモデルを学習するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-20T12:06:56Z) - Concise and interpretable multi-label rule sets [13.416159628299779]
簡単な「if-then」ルールの簡潔な集合として表現できるマルチラベル分類器を開発した。
提案手法は, 正確なマルチラベル分類に繋がる, 関連パターンの小さな集合を見つけることができる。
論文 参考訳(メタデータ) (2022-10-04T11:23:50Z) - Universal and data-adaptive algorithms for model selection in linear
contextual bandits [52.47796554359261]
モデル選択の最も単純な非自明な例を考える: 単純な多重武装バンディット問題と線形文脈バンディット問題とを区別する。
データ適応的な方法で探索する新しいアルゴリズムを導入し、$mathcalO(dalpha T1- alpha)$という形式の保証を提供する。
我々のアプローチは、いくつかの仮定の下で、ネストされた線形文脈包帯のモデル選択に拡張する。
論文 参考訳(メタデータ) (2021-11-08T18:05:35Z) - Preference learning along multiple criteria: A game-theoretic
perspective [97.94912276610002]
我々は、ブラックウェルの接近性からインスピレーションを得て、フォン・ノイマンの勝者の概念をマルチ基準設定に一般化する。
本フレームワークは,基準間の選好の非線形集約を可能にし,多目的最適化から線形化に基づくアプローチを一般化する。
凸最適化問題の解法として,マルチ基準問題インスタンスのブラックウェルの勝者が計算可能であることを示す。
論文 参考訳(メタデータ) (2021-05-05T03:23:11Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
元のサンプルと拡張されたサンプルの埋め込み/表現の距離を規則化することは、ニューラルネットワークの堅牢性を改善するための一般的なテクニックである。
本稿では、これらの様々な正規化選択について検討し、埋め込みの正規化方法の理解を深める。
私たちが特定したジェネリックアプローチ(squared $ell$ regularized augmentation)は、それぞれ1つのタスクのために特別に設計されたいくつかの手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-25T22:40:09Z) - Generation of Consistent Sets of Multi-Label Classification Rules with a
Multi-Objective Evolutionary Algorithm [11.25469393912791]
本稿では,複数のルールに基づく多ラベル分類モデルを生成する多目的進化アルゴリズムを提案する。
我々のアルゴリズムは規則の集合(順序のない集合)に基づいてモデルを生成し、解釈可能性を高める。
また、ルール作成中にコンフリクト回避アルゴリズムを用いることで、与えられたモデル内のすべてのルールは、同じモデル内の他のすべてのルールと整合することが保証される。
論文 参考訳(メタデータ) (2020-03-27T16:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。