論文の概要: Learning to Track Dynamic Targets in Partially Known Environments
- arxiv url: http://arxiv.org/abs/2006.10190v1
- Date: Wed, 17 Jun 2020 22:45:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 20:37:08.234498
- Title: Learning to Track Dynamic Targets in Partially Known Environments
- Title(参考訳): 部分的環境における動的目標追跡の学習
- Authors: Heejin Jeong, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J.
Pappas
- Abstract要約: 我々は、アクティブな目標追跡を解決するために、深層強化学習アプローチを用いる。
特に,アクティブ・トラッカー・ターゲティング・ネットワーク(ATTN)を導入し,アクティブ・ターゲティング・ターゲティングの主要なタスクを解決するための統一的なRLポリシーを提案する。
- 参考スコア(独自算出の注目度): 48.49957897251128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We solve active target tracking, one of the essential tasks in autonomous
systems, using a deep reinforcement learning (RL) approach. In this problem, an
autonomous agent is tasked with acquiring information about targets of
interests using its onboard sensors. The classical challenges in this problem
are system model dependence and the difficulty of computing
information-theoretic cost functions for a long planning horizon. RL provides
solutions for these challenges as the length of its effective planning horizon
does not affect the computational complexity, and it drops the strong
dependency of an algorithm on system models. In particular, we introduce Active
Tracking Target Network (ATTN), a unified RL policy that is capable of solving
major sub-tasks of active target tracking -- in-sight tracking, navigation, and
exploration. The policy shows robust behavior for tracking agile and anomalous
targets with a partially known target model. Additionally, the same policy is
able to navigate in obstacle environments to reach distant targets as well as
explore the environment when targets are positioned in unexpected locations.
- Abstract(参考訳): 我々は,自律システムにおいて不可欠なタスクであるアクティブターゲットトラッキングを,深層強化学習(RL)アプローチを用いて解決する。
この問題では、自律エージェントが、その搭載センサーを用いて興味の対象に関する情報を取得する。
この問題の古典的な課題は、システムモデル依存と長期計画のための情報理論コスト関数の計算の難しさである。
RLは、効率的な計画の水平線の長さが計算の複雑さに影響を与えず、システムモデルへのアルゴリズムの強い依存を減少させるため、これらの課題に対する解決策を提供する。
特に、アクティブ・トラッキング・ターゲット・ネットワーク(ATTN)について紹介する。これは、アクティブ・ターゲット・トラッキングの主要なサブタスクである、インサイト・トラッキング、ナビゲーション、探索を解決できる統一されたRLポリシーである。
このポリシーは、アジャイルと異常なターゲットを部分的に既知のターゲットモデルで追跡する堅牢な行動を示している。
さらに、同じ方針は障害物環境の中を移動して遠くの目標に到達したり、予期せぬ位置に目標が配置されたときの環境を探索することができる。
関連論文リスト
- Diffusion-Reinforcement Learning Hierarchical Motion Planning in Adversarial Multi-agent Games [6.532258098619471]
部分的に観察可能なマルチエージェント追従ゲーム(PEG)における回避目標の動作計画タスクに焦点をあてる。
これらの追尾回避問題は、捜索・救助活動や監視ロボットなど、様々な応用に関係している。
環境データに応答するグローバルパスを計画するために,高レベル拡散モデルを統合する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-16T03:53:55Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning
with Temporal Logic Task Specifications [11.812602599752294]
未知の構造を持つ環境で動作している未知のダイナミクスを持つロボットについて考察する。
我々の目標は、オートマトン符号化されたタスクを満足する確率を最大化する制御ポリシーを合成することである。
そこで本研究では,制御ポリシーを類似手法と比較して顕著に高速に学習できるDRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:59:58Z) - A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with
Dynamic Obstacle Trajectory Prediction and Its Application with LLMs [6.747468447244154]
本稿では,動的障害物の追跡と軌道予測を組み合わせて,効率的な自律飛行を実現するビジョンベース計画システムを提案する。
シミュレーション環境と実環境環境の両方で実験を行い,本研究の結果から動的環境の障害物をリアルタイムに検出・回避することが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-11-21T08:09:00Z) - Learning Goal-Conditioned Policies Offline with Self-Supervised Reward
Shaping [94.89128390954572]
本稿では,モデルの構造と力学を理解するために,事前収集したデータセット上に,新たな自己教師型学習フェーズを提案する。
提案手法を3つの連続制御タスクで評価し,既存手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-05T15:07:10Z) - Reinforcement Learning for Agile Active Target Sensing with a UAV [10.070339628481445]
本稿では,情報トラジェクトリを計画するための深層強化学習手法を開発する。
ターゲット状態に対する現在の信念を活用し、高忠実度分類のための不正確なセンサーモデルを含む。
提案手法の特異な特徴は,真の目標分布から様々な量の偏差が生じることにある。
論文 参考訳(メタデータ) (2022-12-16T01:01:17Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
汎用ロボットは、現実世界の非構造環境において困難なタスクを完了するために、多様な行動レパートリーを必要とする。
この問題に対処するため、目標条件強化学習は、コマンド上の幅広いタスクの目標に到達可能なポリシーを取得することを目的としている。
本研究では,長期的課題に対する目標条件付き政策を実践的に訓練する手法であるPlanning to Practiceを提案する。
論文 参考訳(メタデータ) (2022-05-17T06:58:17Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
ゴール条件強化学習は、ナビゲーションや操作を含む幅広い領域のタスクを解決できる。
本研究では,学習時間における探索を用いて,中間状態を自動生成する遠隔目標獲得タスクを提案する。
E-stepはグラフ検索を用いて最適な経路点列を計画することに対応し、M-stepはそれらの経路点に到達するための目標条件付きポリシーを学習することを目的としている。
論文 参考訳(メタデータ) (2021-10-22T22:05:31Z) - Learning Target Candidate Association to Keep Track of What Not to Track [100.80610986625693]
目標を追尾し続けるために、逸脱物を追跡することを提案します。
視覚的トラッキングにおいて, トラクタオブジェクト間の接地トルース対応を欠く問題に対処するために, 部分アノテーションと自己監督を組み合わせたトレーニング戦略を提案する。
我々のトラッカーは6つのベンチマークで新しい最先端のベンチマークを設定し、AUCスコアはLaSOTで67.2%、OxUvA長期データセットで+6.1%向上した。
論文 参考訳(メタデータ) (2021-03-30T17:58:02Z) - Follow the Object: Curriculum Learning for Manipulation Tasks with
Imagined Goals [8.98526174345299]
本稿では,想像対象目標の概念を紹介する。
特定の操作タスクに対して、興味のある対象は、まず自分自身で所望の目標位置に到達するように訓練される。
オブジェクトポリシーは、可塑性オブジェクト軌跡の予測モデルを構築するために利用されます。
提案するアルゴリズムであるFollow the Objectは、7つのMuJoCo環境で評価されている。
論文 参考訳(メタデータ) (2020-08-05T12:19:14Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。