論文の概要: Reinforcement Learning for Agile Active Target Sensing with a UAV
- arxiv url: http://arxiv.org/abs/2212.08214v1
- Date: Fri, 16 Dec 2022 01:01:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 16:05:55.631094
- Title: Reinforcement Learning for Agile Active Target Sensing with a UAV
- Title(参考訳): UAVを用いたアジャイルアクティブターゲットセンシングのための強化学習
- Authors: Harsh Goel, Laura Jarin Lipschitz, Saurav Agarwal, Sandeep Manjanna,
and Vijay Kumar
- Abstract要約: 本稿では,情報トラジェクトリを計画するための深層強化学習手法を開発する。
ターゲット状態に対する現在の信念を活用し、高忠実度分類のための不正確なセンサーモデルを含む。
提案手法の特異な特徴は,真の目標分布から様々な量の偏差が生じることにある。
- 参考スコア(独自算出の注目度): 10.070339628481445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active target sensing is the task of discovering and classifying an unknown
number of targets in an environment and is critical in search-and-rescue
missions. This paper develops a deep reinforcement learning approach to plan
informative trajectories that increase the likelihood for an uncrewed aerial
vehicle (UAV) to discover missing targets. Our approach efficiently (1)
explores the environment to discover new targets, (2) exploits its current
belief of the target states and incorporates inaccurate sensor models for
high-fidelity classification, and (3) generates dynamically feasible
trajectories for an agile UAV by employing a motion primitive library.
Extensive simulations on randomly generated environments show that our approach
is more efficient in discovering and classifying targets than several other
baselines. A unique characteristic of our approach, in contrast to heuristic
informative path planning approaches, is that it is robust to varying amounts
of deviations of the prior belief from the true target distribution, thereby
alleviating the challenge of designing heuristics specific to the application
conditions.
- Abstract(参考訳): アクティブターゲットセンシング(active target sensing)は、未知数のターゲットを発見・分類するタスクであり、探索・回収ミッションにおいて重要な役割を担っている。
本稿では,無人航空機(UAV)が行方不明な目標を発見できる可能性を高めるため,情報トラジェクトリを計画するための深層強化学習手法を開発する。
提案手法は,(1)新たな目標を探索する環境を探索し,(2)ターゲット状態の現在の信念を活用,(2)高忠実度分類のための不正確なセンサモデルを導入し,(3)モーションプリミティブライブラリを用いて,アジャイルUAVのための動的に実現可能な軌道を生成する。
ランダムに生成された環境の広範囲なシミュレーションは、我々のアプローチが他のいくつかのベースラインよりもターゲットの発見と分類に効率的であることを示している。
我々のアプローチのユニークな特徴は、ヒューリスティックな情報経路計画手法とは対照的に、真の目標分布から前の信念のばらつきの変動に頑健であり、その結果、適用条件に特有のヒューリスティックを設計することの難しさを軽減することである。
関連論文リスト
- FIT-SLAM -- Fisher Information and Traversability estimation-based
Active SLAM for exploration in 3D environments [1.4474137122906163]
アクティブビジュアルSLAMは、地上ロボットのためのデニッドサブテレイン環境と屋外環境における幅広い応用を見出す。
探索ミッション中に目標選択と目標に向けた経路計画に知覚的考察を取り入れることが不可欠である。
本研究では,無人地上車両(UGV)を対象とした新しい探査手法であるFIT-SLAMを提案する。
論文 参考訳(メタデータ) (2024-01-17T16:46:38Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - Distributed multi-agent target search and tracking with Gaussian process
and reinforcement learning [26.499110405106812]
分散プロセスに基づくターゲットマップ構築によるマルチエージェント強化学習手法を提案する。
シミュレーションにおける訓練された方針の性能と伝達性を評価し, 小型無人航空機の群集上での手法を実証した。
論文 参考訳(メタデータ) (2023-08-29T01:53:14Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Uncertainty with UAV Search of Multiple Goal-oriented Targets [25.918290198644122]
本稿では,不確実性下でのUAVの探索対象の複雑な問題について考察する。
エントロピーと時間的信念を組み合わせた,UAVのためのリアルタイムアルゴリズムフレームワークを提案する。
我々は,アルゴリズムの枠組みを実証的に評価し,その効率と大幅な性能向上を実証した。
論文 参考訳(メタデータ) (2022-03-03T09:57:00Z) - Generative multitask learning mitigates target-causing confounding [61.21582323566118]
マルチタスク学習のための因果表現学習のためのシンプルでスケーラブルなアプローチを提案する。
改善は、目標を狙うが入力はしない、観測されていない共同ファウンダーを緩和することによる。
人の属性とタスクノミーのデータセットに対する我々の結果は、事前の確率シフトに対するロバストネスの概念的改善を反映している。
論文 参考訳(メタデータ) (2022-02-08T20:42:14Z) - Goal-Aware Cross-Entropy for Multi-Target Reinforcement Learning [15.33496710690063]
本稿では,目標認識型クロスエントロピー(GACE)ロスを提案する。
次に、目標関連情報を利用して与えられた指示に集中する目標識別型注意ネットワーク(GDAN)を考案する。
論文 参考訳(メタデータ) (2021-10-25T14:24:39Z) - Adversarial Intrinsic Motivation for Reinforcement Learning [60.322878138199364]
政策状態の訪問分布と目標分布とのワッサースタイン-1距離が強化学習タスクに有効に活用できるかどうかを検討する。
我々のアプローチは、AIM (Adversarial Intrinsic Motivation) と呼ばれ、このワッサーシュタイン-1距離をその双対目的を通して推定し、補足報酬関数を計算する。
論文 参考訳(メタデータ) (2021-05-27T17:51:34Z) - Learning to Track Dynamic Targets in Partially Known Environments [48.49957897251128]
我々は、アクティブな目標追跡を解決するために、深層強化学習アプローチを用いる。
特に,アクティブ・トラッカー・ターゲティング・ネットワーク(ATTN)を導入し,アクティブ・ターゲティング・ターゲティングの主要なタスクを解決するための統一的なRLポリシーを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:45:24Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
新しい未解決タスクを継続的に解決することが、多様な行動を学ぶための鍵です。
エージェントが複数の目標を達成する必要があるマルチタスク領域では、トレーニング目標の選択はサンプル効率に大きな影響を与える可能性がある。
そこで我々は,エージェントが解決すべき目標のための自動カリキュラムを作成することを提案する。
提案手法は,13のマルチゴールロボットタスクと5つのナビゲーションタスクにまたがって評価し,現在の最先端手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2020-06-17T03:58:25Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。