論文の概要: MediaPipe Hands: On-device Real-time Hand Tracking
- arxiv url: http://arxiv.org/abs/2006.10214v1
- Date: Thu, 18 Jun 2020 00:19:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 13:50:11.354044
- Title: MediaPipe Hands: On-device Real-time Hand Tracking
- Title(参考訳): MediaPipeハンズオン:デバイス上のリアルタイムハンドトラッキング
- Authors: Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka,
George Sung, Chuo-Ling Chang, Matthias Grundmann
- Abstract要約: 我々は、AR/VRアプリケーション用の1台のRGBカメラからハンドスケルトンを予測する、デバイス上でのリアルタイムハンドトラッキングパイプラインを提案する。
パイプラインは、1)手のひら検出器、2)手の目印モデルという2つのモデルで構成されている。
クロスプラットフォームのMLソリューションを構築するためのフレームワークであるMediaPipeを通じて実装されている。
- 参考スコア(独自算出の注目度): 3.8979600450236784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a real-time on-device hand tracking pipeline that predicts hand
skeleton from single RGB camera for AR/VR applications. The pipeline consists
of two models: 1) a palm detector, 2) a hand landmark model. It's implemented
via MediaPipe, a framework for building cross-platform ML solutions. The
proposed model and pipeline architecture demonstrates real-time inference speed
on mobile GPUs and high prediction quality. MediaPipe Hands is open sourced at
https://mediapipe.dev.
- Abstract(参考訳): 本稿では,ar/vrアプリケーション用の単一rgbカメラからハンドスケルトンを予測するリアルタイムハンドトラッキングパイプラインを提案する。
パイプラインは2つのモデルで構成される。
1)手のひら検知器、
2)手書きのランドマークモデル。
クロスプラットフォームのMLソリューションを構築するためのフレームワークであるMediaPipeを通じて実装されている。
提案したモデルとパイプラインアーキテクチャは,モバイルGPU上でのリアルタイム推論速度と高い予測品質を示す。
MediaPipe Handsはhttps://mediapipe.dev.comで公開されている。
関連論文リスト
- WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild [53.288327629960364]
野生における効率的なマルチハンド再構築のためのデータ駆動パイプラインを提案する。
提案するパイプラインは、リアルタイム完全畳み込みハンドローカライゼーションと、高忠実度トランスフォーマーに基づく3Dハンド再構成モデルという2つのコンポーネントで構成されている。
提案手法は, 一般的な2次元および3次元のベンチマークにおいて, 効率と精度の両方において, 従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-09-18T18:46:51Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
本稿では,ビデオシーケンスを通して任意の物理面上の問合せ点を効果的に追跡する,TAP(Tracking Any Point)の新しいモデルを提案する。
提案手法では,(1)他のフレームの問合せ点に対する適切な候補点マッチングを独立に特定するマッチング段階と,(2)局所的相関に基づいてトラジェクトリと問合せの両方を更新する改良段階の2段階を用いる。
結果として得られたモデルは、DAVISにおける平均約20%の絶対平均ジャカード(AJ)改善によって示されるように、TAP-Vidベンチマークにおける大きなマージンで、すべてのベースライン手法を上回ります。
論文 参考訳(メタデータ) (2023-06-14T17:07:51Z) - Im2Hands: Learning Attentive Implicit Representation of Interacting
Two-Hand Shapes [58.551154822792284]
Implicit Two Hands (Im2Hands) は、2つの相互作用する手の最初の暗黙の表現である。
Im2Handsは、両手と手と手と画像のコヒーレンシーの高い2つの手のきめ細かい幾何学を生成することができる。
両手再建におけるIm2Handsの有効性を, 関連手法と比較して実験的に実証した。
論文 参考訳(メタデータ) (2023-02-28T06:38:25Z) - Hand gesture recognition using 802.11ad mmWave sensor in the mobile
device [2.5476515662939563]
スマートフォンにおける802.11ad 60GHz (mmWave) 技術を用いたAI支援手振り認識の実現可能性について検討する。
我々は、時間分割デュプレックス(TDD)によってレーダーセンシングと通信波形が共存できるプロトタイプシステムを構築した。
センシングデータを収集し、100ミリ秒以内にジェスチャーを予測する。
論文 参考訳(メタデータ) (2022-11-14T03:36:17Z) - PyNet-V2 Mobile: Efficient On-Device Photo Processing With Neural
Networks [115.97113917000145]
エッジデバイス用に設計された新しいPyNET-V2 Mobile CNNアーキテクチャを提案する。
提案アーキテクチャでは,携帯電話から直接RAW 12MPの写真を1.5秒で処理することができる。
提案したアーキテクチャは,最新のモバイルAIアクセラレータとも互換性があることが示されている。
論文 参考訳(メタデータ) (2022-11-08T17:18:01Z) - Tech Report: One-stage Lightweight Object Detectors [0.38073142980733]
この研究は、mAPと遅延の点でよく機能するワンステージ軽量検出器を設計するためのものである。
GPUとCPUを対象とするベースラインモデルでは、ベースラインモデルのバックボーンネットワークにおけるメイン操作の代わりに、さまざまな操作が適用される。
論文 参考訳(メタデータ) (2022-10-31T09:02:37Z) - On-device Real-time Hand Gesture Recognition [1.4658400971135652]
本稿では,1台のRGBカメラから予め定義された静的ジェスチャーを検知するデバイス上でのリアルタイム手ジェスチャー認識(HGR)システムを提案する。
ハンドスケルトントラッカーの基礎としてMediaPipe Handsを使用し、キーポイント精度を改善し、世界距離空間における3次元キーポイントの推定を追加する。
論文 参考訳(メタデータ) (2021-10-29T18:33:25Z) - HandFoldingNet: A 3D Hand Pose Estimation Network Using
Multiscale-Feature Guided Folding of a 2D Hand Skeleton [4.1954750695245835]
本稿では,高精度かつ効率的なポーズ推定器であるHandFoldingNetを提案する。
提案モデルでは, 折り畳み型デコーダを用いて, 与えられた2次元手骨を対応する関節座標に折り畳む。
実験結果から,提案モデルが既存の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-08-12T05:52:44Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
本稿では,1台のRGBカメラによる骨格ポーズのモーションキャプチャと手の表面形状をリアルタイムに計測する手法を提案する。
RGBデータの本質的な深さの曖昧さに対処するために,我々は新しいマルチタスクCNNを提案する。
RGBの片手追跡と3D再構築パイプラインの個々のコンポーネントを実験的に検証した。
論文 参考訳(メタデータ) (2021-06-22T12:53:56Z) - FastHand: Fast Hand Pose Estimation From A Monocular Camera [12.790733588554588]
ハンドポーズ推定のための高速・高精度なフレームワーク「FastHand」を提案します。
FastHandは、NVIDIA Jetson TX2グラフィックス処理ユニットで毎秒25フレームの速度に達しながら、高い精度のスコアを提供する。
論文 参考訳(メタデータ) (2021-02-14T04:12:41Z) - DeepHandMesh: A Weakly-supervised Deep Encoder-Decoder Framework for
High-fidelity Hand Mesh Modeling [75.69585456580505]
DeepHandMeshは、高忠実度ハンドメッシュモデリングのための弱教師付きディープエンコーダデコーダフレームワークである。
また,一般画像からの3次元手メッシュ推定にも有効であることを示す。
論文 参考訳(メタデータ) (2020-08-19T00:59:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。