論文の概要: A Framework for Sample Efficient Interval Estimation with Control
Variates
- arxiv url: http://arxiv.org/abs/2006.10287v1
- Date: Thu, 18 Jun 2020 05:42:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 12:42:42.623756
- Title: A Framework for Sample Efficient Interval Estimation with Control
Variates
- Title(参考訳): 制御変数を用いた高効率区間推定のためのフレームワーク
- Authors: Shengjia Zhao, Christopher Yeh, Stefano Ermon
- Abstract要約: 確率変数の平均に対して信頼区間を推定する問題を考察する。
ある条件下では、既存の推定アルゴリズムと比較して効率が向上している。
- 参考スコア(独自算出の注目度): 94.32811054797148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of estimating confidence intervals for the mean of a
random variable, where the goal is to produce the smallest possible interval
for a given number of samples. While minimax optimal algorithms are known for
this problem in the general case, improved performance is possible under
additional assumptions. In particular, we design an estimation algorithm to
take advantage of side information in the form of a control variate, leveraging
order statistics. Under certain conditions on the quality of the control
variates, we show improved asymptotic efficiency compared to existing
estimation algorithms. Empirically, we demonstrate superior performance on
several real world surveying and estimation tasks where we use the output of
regression models as the control variates.
- Abstract(参考訳): 確率変数の平均に対する信頼区間を推定する問題は、与えられたサンプル数に対して最小限の信頼区間を生成することである。
minimaxの最適アルゴリズムは一般的な場合ではこの問題で知られているが、追加の仮定の下では性能改善が可能である。
特に,制御変数の形式で側情報を利用するための推定アルゴリズムを設計し,順序統計を利用した。
制御品質の一定の条件下では,既存の推定アルゴリズムと比較して漸近効率が向上した。
実験では,回帰モデルの出力を制御変数として利用する実世界調査および推定タスクにおいて,優れた性能を示す。
関連論文リスト
- Gradient Descent Efficiency Index [0.0]
本研究では,各イテレーションの有効性を定量化するために,新しい効率指標Ekを導入する。
提案した測定基準は、誤差の相対的変化と繰り返し間の損失関数の安定性の両方を考慮に入れている。
Ekは、機械学習アプリケーションにおける最適化アルゴリズムの選択とチューニングにおいて、より詳細な決定を導く可能性がある。
論文 参考訳(メタデータ) (2024-10-25T10:22:22Z) - RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms [0.393259574660092]
RHiOTSは、階層的な時系列予測モデルとアルゴリズムを実世界のデータセット上で堅牢性を評価するように設計されている。
RHiOTSは、複雑な多次元ロバストネス評価結果を直感的で容易に解釈可能なビジュアルに変換する革新的な可視化コンポーネントを組み込んでいる。
従来の統計的手法は、変換効果が非常に破壊的である場合を除き、最先端のディープラーニングアルゴリズムよりも頑健であることを示す。
論文 参考訳(メタデータ) (2024-08-06T18:52:15Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
Optimization [1.7513645771137178]
勾配情報のない制約のない最適化問題を考察する。
適応的なサンプリング準ニュートン法を提案し、共通乱数フレームワーク内の有限差を用いてシミュレーション関数の勾配を推定する。
そこで本研究では, 標準試験と内積準ニュートン試験の修正版を開発し, 近似に使用する試料サイズを制御し, 最適解の近傍に大域収束結果を与える。
論文 参考訳(メタデータ) (2021-09-24T21:49:25Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
我々は,複数のロギングポリシからオフ政治評価を行い,それぞれが一定のサイズ,すなわち階層化サンプリングのデータセットを生成する。
複数ロガーのOPE推定器は,任意のインスタンス,すなわち効率のよいインスタンスに対して最小分散である。
論文 参考訳(メタデータ) (2020-10-21T13:43:48Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
本稿では,制御,カーネル,ニューラルネットワークを用いた既存のアプローチを包含し,一般化するフレームワークを提案する。
新たな理論的結果は、達成可能な分散還元に関する洞察を与えるために提示され、ベイズ推定への応用を含む経験的評価が支持される。
論文 参考訳(メタデータ) (2020-06-12T22:03:25Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
我々は、割引決定過程における政策評価の問題に対処し、生成モデルの下で、ll_infty$errorに対するマルコフに依存した保証を提供する。
我々は、ポリシー評価のために、局所ミニマックス下限の両漸近バージョンと非漸近バージョンを確立し、アルゴリズムを比較するためのインスタンス依存ベースラインを提供する。
論文 参考訳(メタデータ) (2020-03-16T17:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。