論文の概要: Tensor Decompositions in Recursive Neural Networks for Tree-Structured
Data
- arxiv url: http://arxiv.org/abs/2006.10619v2
- Date: Thu, 13 Aug 2020 12:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 12:46:31.147456
- Title: Tensor Decompositions in Recursive Neural Networks for Tree-Structured
Data
- Title(参考訳): 木構造データに対する再帰ニューラルネットワークのテンソル分解
- Authors: Daniele Castellana and Davide Bacciu
- Abstract要約: 木構造データから構造知識を符号化する2つの新しい集約関数を導入する。
2つの木分類タスクでテストを行い、木外度が増加する場合に提案したモデルの利点を示す。
- 参考スコア(独自算出の注目度): 12.069862650316262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper introduces two new aggregation functions to encode structural
knowledge from tree-structured data. They leverage the Canonical and
Tensor-Train decompositions to yield expressive context aggregation while
limiting the number of model parameters. Finally, we define two novel neural
recursive models for trees leveraging such aggregation functions, and we test
them on two tree classification tasks, showing the advantage of proposed models
when tree outdegree increases.
- Abstract(参考訳): 本稿では,木構造データから構造知識をエンコードする2つの新しい集約関数を提案する。
それらはCanonicalとTensor-Trainの分解を利用して、モデルパラメータの数を制限しながら表現的なコンテキストアグリゲーションを生成する。
最後に、このような集約関数を利用する木に対する2つの新しいニューラル再帰モデルを定義し、木外度が増大する際のモデルの有効性を示す。
関連論文リスト
- Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Treesは時系列モデルのパラメータを学習するために設計されている。
対象とする時系列モデルのパラメータを特徴に関連付けることで、Hyper-Treesはパラメータ非定常性の問題にも対処する。
この新しいアプローチでは、木はまず入力特徴から情報表現を生成し、浅いネットワークはターゲットモデルパラメータにマップする。
論文 参考訳(メタデータ) (2024-05-13T15:22:15Z) - Tree Variational Autoencoders [5.992683455757179]
本稿では,潜在変数上の柔軟木に基づく後続分布を学習する階層的階層クラスタリングモデルを提案する。
TreeVAEは、本質的な特徴に従ってサンプルを階層的に分割し、データ内の隠れた構造に光を遮る。
論文 参考訳(メタデータ) (2023-06-15T09:25:04Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - A Tree-structured Transformer for Program Representation Learning [27.31416015946351]
プログラムには長期/グローバルな依存関係が広く存在し、ほとんどのニューラルネットワークはこれらの依存関係をキャプチャできない。
本稿では,この制限を克服することを目的とした,新しい木構造ニューラルネットワークであるTree-Transformerを提案する。
ボトムアップとトップダウンの伝搬を組み合わせることで、Tree-Transformerはグローバルコンテキストと有意義なノード機能の両方を学ぶことができる。
論文 参考訳(メタデータ) (2022-08-18T05:42:01Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
本研究では,高次元scRNA-seqデータから意味のある木構造を同定する手法を提案する。
次に、低次元空間におけるデータのツリー構造を強調する木バイアスオートエンコーダDTAEを紹介する。
論文 参考訳(メタデータ) (2021-02-11T08:48:48Z) - Robust estimation of tree structured models [0.0]
ノイズの多い二分データから、可能な木の小さな等価クラスまで、木を復元できることが示される。
また、Chow-Liuアルゴリズムがノイズデータから根本木を継続的に学習する際の特徴付けも提供する。
論文 参考訳(メタデータ) (2021-02-10T14:58:40Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
ノードからの観測が独立しているが非識別的に分散ノイズによって破損した場合、Ising Treeモデルの学習を検討する。
Katiyarら。
(2020) は, 正確な木構造は復元できないが, 部分木構造を復元できることを示した。
統計的に堅牢な部分木回復アルゴリズムであるSymmetrized Geometric Averaging(SGA)を提案する。
論文 参考訳(メタデータ) (2021-01-22T01:57:35Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Learning from Non-Binary Constituency Trees via Tensor Decomposition [12.069862650316262]
非バイナリ選挙区木に対処する新しいアプローチを導入する。
標準テンソル分解に基づく強力な合成関数が、そのようなリッチな構造をいかに活用できるかを示す。
異なるNLPタスクにおいて,その性能を実験的に評価する。
論文 参考訳(メタデータ) (2020-11-02T10:06:59Z) - Recursive Top-Down Production for Sentence Generation with Latent Trees [77.56794870399288]
自然および合成言語に対する文脈自由文法の生成特性をモデル化する。
潜伏二分木構造にN$の葉を持つ動的プログラミングアルゴリズムを提案する。
また,Multi30kデータセットを用いたドイツ語と英語の翻訳実験を行った。
論文 参考訳(メタデータ) (2020-10-09T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。