論文の概要: Robust estimation of tree structured models
- arxiv url: http://arxiv.org/abs/2102.05472v1
- Date: Wed, 10 Feb 2021 14:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-11 14:39:04.523240
- Title: Robust estimation of tree structured models
- Title(参考訳): 木構造モデルのロバスト推定
- Authors: Marta Casanellas, Marina Garrote-L\'opez and Piotr Zwiernik
- Abstract要約: ノイズの多い二分データから、可能な木の小さな等価クラスまで、木を復元できることが示される。
また、Chow-Liuアルゴリズムがノイズデータから根本木を継続的に学習する際の特徴付けも提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consider the problem of learning undirected graphical models on trees from
corrupted data. Recently Katiyar et al. showed that it is possible to recover
trees from noisy binary data up to a small equivalence class of possible trees.
Their other paper on the Gaussian case follows a similar pattern. By framing
this as a special phylogenetic recovery problem we largely generalize these two
settings. Using the framework of linear latent tree models we discuss tree
identifiability for binary data under a continuous corruption model. For the
Ising and the Gaussian tree model we also provide a characterisation of when
the Chow-Liu algorithm consistently learns the underlying tree from the noisy
data.
- Abstract(参考訳): 破損したデータから木上で非指向のグラフィカルモデルを学ぶ問題を考える。
最近、katiyarら。
ノイズの多いバイナリーデータから、可能な木の小さな等価クラスまで、木を復元できることを示しました。
ガウスのケースに関する他の論文も同様のパターンに従っている。
これを特別な系統回復問題とすることで、我々はこの2つの設定を概ね一般化する。
線形潜在木モデルの枠組みを用いて,連続的腐敗モデルの下でのバイナリデータのツリー識別可能性について議論する。
Ising と Gaussian のツリーモデルに対しては、Chow-Liu アルゴリズムがノイズデータから根本木を一貫して学習する際の特徴付けも提供する。
関連論文リスト
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
混合モデルに対する説明可能性-雑音比の概念を導入する。
本研究では,混合モデルを入力として,データに依存しない時間に適切な木を構築するアルゴリズムを提案する。
結果の決定ツリーの誤り率について,上と下の境界を証明した。
論文 参考訳(メタデータ) (2024-11-03T14:00:20Z) - Learning Staged Trees from Incomplete Data [1.6327794667678908]
モデル学習における欠落を処理するステージ木の最初のアルゴリズムについて紹介する。
計算実験では、新しい学習アルゴリズムの性能を示す。
論文 参考訳(メタデータ) (2024-05-28T16:00:23Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Treesは時系列モデルのパラメータを学習するために設計されている。
対象とする時系列モデルのパラメータを特徴に関連付けることで、Hyper-Treesはパラメータ非定常性の問題にも対処する。
この新しいアプローチでは、木はまず入力特徴から情報表現を生成し、浅いネットワークはターゲットモデルパラメータにマップする。
論文 参考訳(メタデータ) (2024-05-13T15:22:15Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
我々は、$rho$が少なくとも0.8$である場合に、エラー指数を少なくとも40%向上させるアルゴリズムを設計し、分析する。
我々の分析は、グラフの一部により多くのデータを割り当てるために、微小だが検出可能なサンプルの統計的変動を巧みに活用することに基づいている。
論文 参考訳(メタデータ) (2021-10-27T10:45:21Z) - Spectral Top-Down Recovery of Latent Tree Models [13.681975313065477]
スペクトルトップダウン・リカバリ (STDR) は、大きな潜在木モデルを推定するための分割・コンカレントアプローチである。
STDRの分割ステップは非ランダムです。
代わりに、観測されたノードに関連する適切なラプラシア行列のFiedlerベクトルに基づいている。
私達はSTDRが統計的に一貫性があることを証明し、高い確率で木を正確に回復するために必要なサンプルの数を縛ります。
論文 参考訳(メタデータ) (2021-02-26T02:47:42Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
本研究では,高次元scRNA-seqデータから意味のある木構造を同定する手法を提案する。
次に、低次元空間におけるデータのツリー構造を強調する木バイアスオートエンコーダDTAEを紹介する。
論文 参考訳(メタデータ) (2021-02-11T08:48:48Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
ノードからの観測が独立しているが非識別的に分散ノイズによって破損した場合、Ising Treeモデルの学習を検討する。
Katiyarら。
(2020) は, 正確な木構造は復元できないが, 部分木構造を復元できることを示した。
統計的に堅牢な部分木回復アルゴリズムであるSymmetrized Geometric Averaging(SGA)を提案する。
論文 参考訳(メタデータ) (2021-01-22T01:57:35Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Tensor Decompositions in Recursive Neural Networks for Tree-Structured
Data [12.069862650316262]
木構造データから構造知識を符号化する2つの新しい集約関数を導入する。
2つの木分類タスクでテストを行い、木外度が増加する場合に提案したモデルの利点を示す。
論文 参考訳(メタデータ) (2020-06-18T15:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。