Multi-Density Sketch-to-Image Translation Network
- URL: http://arxiv.org/abs/2006.10649v1
- Date: Thu, 18 Jun 2020 16:21:04 GMT
- Title: Multi-Density Sketch-to-Image Translation Network
- Authors: Jialu Huang, Jing Liao, Zhifeng Tan, Sam Kwong
- Abstract summary: We propose the first multi-level density sketch-to-image translation framework, which allows the input sketch to cover a wide range from rough object outlines to micro structures.
Our method has been successfully verified on various datasets for different applications including face editing, multi-modal sketch-to-photo translation, and anime colorization.
- Score: 65.4028451067947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sketch-to-image (S2I) translation plays an important role in image synthesis
and manipulation tasks, such as photo editing and colorization. Some specific
S2I translation including sketch-to-photo and sketch-to-painting can be used as
powerful tools in the art design industry. However, previous methods only
support S2I translation with a single level of density, which gives less
flexibility to users for controlling the input sketches. In this work, we
propose the first multi-level density sketch-to-image translation framework,
which allows the input sketch to cover a wide range from rough object outlines
to micro structures. Moreover, to tackle the problem of noncontinuous
representation of multi-level density input sketches, we project the density
level into a continuous latent space, which can then be linearly controlled by
a parameter. This allows users to conveniently control the densities of input
sketches and generation of images. Moreover, our method has been successfully
verified on various datasets for different applications including face editing,
multi-modal sketch-to-photo translation, and anime colorization, providing
coarse-to-fine levels of controls to these applications.
Related papers
- Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation [81.45400849638347]
In-image machine translation (IIMT) aims to translate an image containing texts in source language into an image containing translations in target language.
In this paper, we propose an end-to-end IIMT model consisting of four modules.
Our model achieves competitive performance compared to cascaded models with only 70.9% of parameters, and significantly outperforms the pixel-level end-to-end IIMT model.
arXiv Detail & Related papers (2024-07-03T08:15:39Z) - SketchTriplet: Self-Supervised Scenarized Sketch-Text-Image Triplet Generation [6.39528707908268]
There continues to be a lack of large-scale paired datasets for scene sketches.
We propose a self-supervised method for scene sketch generation that does not rely on any existing scene sketch.
We contribute a large-scale dataset centered around scene sketches, comprising highly semantically consistent "text-sketch-image" triplets.
arXiv Detail & Related papers (2024-05-29T06:43:49Z) - Sketch-guided Image Inpainting with Partial Discrete Diffusion Process [5.005162730122933]
We introduce a novel partial discrete diffusion process (PDDP) for sketch-guided inpainting.
PDDP corrupts the masked regions of the image and reconstructs these masked regions conditioned on hand-drawn sketches.
The proposed novel transformer module accepts two inputs -- the image containing the masked region to be inpainted and the query sketch to model the reverse diffusion process.
arXiv Detail & Related papers (2024-04-18T07:07:38Z) - CustomSketching: Sketch Concept Extraction for Sketch-based Image
Synthesis and Editing [21.12815542848095]
Personalization techniques for large text-to-image (T2I) models allow users to incorporate new concepts from reference images.
Existing methods primarily rely on textual descriptions, leading to limited control over customized images.
We identify sketches as an intuitive and versatile representation that can facilitate such control.
arXiv Detail & Related papers (2024-02-27T15:52:59Z) - Bridging the Gap: Sketch-Aware Interpolation Network for High-Quality Animation Sketch Inbetweening [58.09847349781176]
We propose a novel deep learning method - Sketch-Aware Interpolation Network (SAIN)
This approach incorporates multi-level guidance that formulates region-level correspondence, stroke-level correspondence and pixel-level dynamics.
A multi-stream U-Transformer is then devised to characterize sketch inbetweening patterns using these multi-level guides through the integration of self / cross-attention mechanisms.
arXiv Detail & Related papers (2023-08-25T09:51:03Z) - SceneComposer: Any-Level Semantic Image Synthesis [80.55876413285587]
We propose a new framework for conditional image synthesis from semantic layouts of any precision levels.
The framework naturally reduces to text-to-image (T2I) at the lowest level with no shape information, and it becomes segmentation-to-image (S2I) at the highest level.
We introduce several novel techniques to address the challenges coming with this new setup.
arXiv Detail & Related papers (2022-11-21T18:59:05Z) - FS-COCO: Towards Understanding of Freehand Sketches of Common Objects in
Context [112.07988211268612]
We advance sketch research to scenes with the first dataset of freehand scene sketches, FS-COCO.
Our dataset comprises 10,000 freehand scene vector sketches with per point space-time information by 100 non-expert individuals.
We study for the first time the problem of the fine-grained image retrieval from freehand scene sketches and sketch captions.
arXiv Detail & Related papers (2022-03-04T03:00:51Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
Sketch-based image editing aims to synthesize and modify photos based on the structural information provided by the human-drawn sketches.
Deep Plastic Surgery is a novel, robust and controllable image editing framework that allows users to interactively edit images using hand-drawn sketch inputs.
arXiv Detail & Related papers (2020-01-09T08:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.