論文の概要: Learning to infer in recurrent biological networks
- arxiv url: http://arxiv.org/abs/2006.10811v2
- Date: Mon, 31 May 2021 17:33:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 09:59:21.431617
- Title: Learning to infer in recurrent biological networks
- Title(参考訳): リカレント生物ネットワークにおける推論の学習
- Authors: Ari S. Benjamin and Konrad P. Kording
- Abstract要約: 大脳皮質は逆アルゴリズムで学習するかもしれないと我々は主張する。
画像とビデオのデータセットをモデル化するために訓練されたリカレントニューラルネットワークについて説明する。
- 参考スコア(独自算出の注目度): 4.56877715768796
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A popular theory of perceptual processing holds that the brain learns both a
generative model of the world and a paired recognition model using variational
Bayesian inference. Most hypotheses of how the brain might learn these models
assume that neurons in a population are conditionally independent given their
common inputs. This simplification is likely not compatible with the type of
local recurrence observed in the brain. Seeking an alternative that is
compatible with complex inter-dependencies yet consistent with known biology,
we argue here that the cortex may learn with an adversarial algorithm. Many
observable symptoms of this approach would resemble known neural phenomena,
including wake/sleep cycles and oscillations that vary in magnitude with
surprise, and we describe how further predictions could be tested. We
illustrate the idea on recurrent neural networks trained to model image and
video datasets. This framework for learning brings variational inference closer
to neuroscience and yields multiple testable hypotheses.
- Abstract(参考訳): 知覚処理の一般的な理論では、脳は世界の生成モデルと変分ベイズ推論を用いたペア認識モデルの両方を学んでいる。
脳がどのように学習するかの仮説の多くは、集団のニューロンが共通の入力から条件的に独立していると仮定している。
この単純化は、おそらく脳で観察される局所再発の種類と互換性がない。
複雑な相互依存と相性がありながら既知の生物学と整合する代替案を求めて、我々は皮質が敵対的アルゴリズムで学習するかもしれないと主張する。
このアプローチの観測可能な症状の多くは、ウェイク/スリープサイクルや、驚きとともに大きさが変わる振動など、既知の神経現象に類似している。
本稿では,画像と映像データセットのモデル化を訓練したリカレントニューラルネットワークのアイデアを説明する。
この学習の枠組みは、変分推論を神経科学に近づけ、複数の検証可能な仮説をもたらす。
関連論文リスト
- Don't Cut Corners: Exact Conditions for Modularity in Biologically Inspired Representations [52.48094670415497]
我々は、生物にインスパイアされた表現が、ソース変数(ソース)に関してモジュール化されるときの理論を開発する。
我々は、最適な生物学的にインスパイアされたリニアオートエンコーダのニューロンがモジュラー化されるかどうかを判断する情報源のサンプルに対して、必要かつ十分な条件を導出する。
我々の理論はどんなデータセットにも当てはまり、以前の研究で研究された統計的な独立性よりもはるかに長い。
論文 参考訳(メタデータ) (2024-10-08T17:41:37Z) - Coin-Flipping In The Brain: Statistical Learning with Neuronal Assemblies [9.757971977909683]
脳の計算モデルNEMOにおける統計的学習の出現について検討する。
アセンブリ間の接続が統計を記録し、環境騒音を利用して確率的選択をすることができることを示す。
論文 参考訳(メタデータ) (2024-06-11T20:51:50Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Unsupervised Learning of Invariance Transformations [105.54048699217668]
近似グラフ自己同型を見つけるためのアルゴリズムフレームワークを開発する。
重み付きグラフにおける近似自己同型を見つけるために、このフレームワークをどのように利用できるかについて議論する。
論文 参考訳(メタデータ) (2023-07-24T17:03:28Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
我々はSwap-VAEと呼ばれる神経活動の不整合表現を学習するための新しい教師なしアプローチを導入する。
このアプローチは、生成モデリングフレームワークとインスタンス固有のアライメント損失を組み合わせたものです。
我々は、行動に関連付けられた関連する潜在次元に沿って、ニューラルネットワークをアンタングルする表現を構築することが可能であることを示す。
論文 参考訳(メタデータ) (2021-11-03T16:39:43Z) - From internal models toward metacognitive AI [0.0]
前頭前皮質では、「認知現実監視ネットワーク」と呼ばれる分散型エグゼクティブネットワークが、生成的逆モデルペアの意識的な関与を編成する。
高い責任信号は、外界を最も捉えているペアに与えられる。
意識はすべての対における責任信号のエントロピーによって決定される。
論文 参考訳(メタデータ) (2021-09-27T05:00:56Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。