論文の概要: Probabilistic Fair Clustering
- arxiv url: http://arxiv.org/abs/2006.10916v2
- Date: Thu, 4 Nov 2021 10:12:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 03:21:56.223634
- Title: Probabilistic Fair Clustering
- Title(参考訳): 確率的フェアクラスタリング
- Authors: Seyed A. Esmaeili, Brian Brubach, Leonidas Tsepenekas, John P.
Dickerson
- Abstract要約: フェアクラスタリングにおける以前の仕事は、グループメンバーシップの完全な知識を前提としている。
近似比を保証したより一般的な設定でクラスタリングアルゴリズムを提案する。
また、異なる群が順序と距離の概念を持つ「計量的メンバーシップ」の問題にも対処する。
- 参考スコア(独自算出の注目度): 31.628993679745292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In clustering problems, a central decision-maker is given a complete metric
graph over vertices and must provide a clustering of vertices that minimizes
some objective function. In fair clustering problems, vertices are endowed with
a color (e.g., membership in a group), and the features of a valid clustering
might also include the representation of colors in that clustering. Prior work
in fair clustering assumes complete knowledge of group membership. In this
paper, we generalize prior work by assuming imperfect knowledge of group
membership through probabilistic assignments. We present clustering algorithms
in this more general setting with approximation ratio guarantees. We also
address the problem of "metric membership", where different groups have a
notion of order and distance. Experiments are conducted using our proposed
algorithms as well as baselines to validate our approach and also surface
nuanced concerns when group membership is not known deterministically.
- Abstract(参考訳): クラスタリング問題において、中央意思決定者は頂点上の完全な計量グラフを与えられ、目的関数を最小化する頂点のクラスタリングを提供する必要がある。
公正なクラスタリング問題では、頂点には色(例えば、グループのメンバーシップ)が付与され、有効なクラスタリングの特徴には、そのクラスタリングにおける色表現が含まれるかもしれない。
フェアクラスタリングにおける以前の仕事は、グループメンバーシップの完全な知識を前提としている。
本稿では,確率的割り当てを通じて,グループメンバシップの不完全な知識を仮定することで,先行作業を一般化する。
近似比保証により,より一般的なクラスタリングアルゴリズムを提案する。
また、異なる群が順序と距離の概念を持つ「計量的メンバーシップ」の問題にも対処する。
提案するアルゴリズムとベースラインを用いて実験を行い,提案手法の妥当性を検証し,グループメンバシップが決定論的に分かっていない場合の不安を浮き彫りにする。
関連論文リスト
- Robust Fair Clustering with Group Membership Uncertainty Sets [31.29773979737976]
本研究では,各集団の集団レベルでの表現に近づき,各集団が制約される正準公正クラスタリング問題について検討する。
簡単なノイズモデルを導入し、意思決定者によって与えられるパラメータを少数必要とします。
本稿では,不規則性保証を証明可能なフェアクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-02T03:11:31Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - A Computational Theory and Semi-Supervised Algorithm for Clustering [0.0]
半教師付きクラスタリングアルゴリズムを提案する。
クラスタリング法のカーネルは、Mohammadの異常検出アルゴリズムである。
結果は、合成および実世界のデータセットで示される。
論文 参考訳(メタデータ) (2023-06-12T09:15:58Z) - Cluster-level Group Representativity Fairness in $k$-means Clustering [3.420467786581458]
クラスタリングアルゴリズムは、異なるグループが異なるクラスタ内で不利になるようにクラスタを生成することができる。
我々は,古典的アルゴリズムに先駆けて,セントロイドクラスタリングパラダイムに基づくクラスタリングアルゴリズムを開発した。
本手法はクラスタレベルの表現性フェアネスを,クラスタのコヒーレンスに低い影響で向上させるのに有効であることを示す。
論文 参考訳(メタデータ) (2022-12-29T22:02:28Z) - Fair Labeled Clustering [28.297893914525517]
クラスタリングのダウンストリーム適用と,そのような設定に対してグループフェアネスをどのように確保するかを検討する。
このような問題に対するアルゴリズムを提供し、グループフェアクラスタリングにおけるNPハードのアルゴリズムとは対照的に、効率的な解が可能であることを示す。
また、距離空間における中心位置に関係なく、意思決定者が自由にクラスタにラベルを割り当てることができるような、モチベーションのよい代替設定についても検討する。
論文 参考訳(メタデータ) (2022-05-28T07:07:12Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z) - Fair Clustering Under a Bounded Cost [33.50262066253557]
クラスタリングは、データセットをメトリクス空間内の近くのポイントで構成されるクラスタに分割する、基本的な教師なしの学習問題である。
最近の変種であるフェアクラスタリング(英語版)は、各点とその群のメンバーシップを表す色を関連付け、各色が群フェアネスを満たすために各クラスタに等しい表現(およそ)を持つことを要求する。
我々は,集団の実用的目的と集団の平等的目的,および集団の平等的目的を一般化するグループ・レキシミン的目的の2つの公正性を考察する。
論文 参考訳(メタデータ) (2021-06-14T08:47:36Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
重複する部分グラフを多数必要とせず,完全に学習可能なクラスタリングフレームワークを提案する。
提案手法はクラスタリングの精度を大幅に向上させ,その上で訓練した認識モデルの性能を向上させるが,既存の教師付き手法に比べて桁違いに効率的である。
論文 参考訳(メタデータ) (2020-04-01T13:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。