論文の概要: Cluster-level Group Representativity Fairness in $k$-means Clustering
- arxiv url: http://arxiv.org/abs/2212.14467v1
- Date: Thu, 29 Dec 2022 22:02:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 17:43:50.976528
- Title: Cluster-level Group Representativity Fairness in $k$-means Clustering
- Title(参考訳): k$-meansクラスタリングにおけるクラスタレベルの表現性公平性
- Authors: Stanley Simoes, Deepak P, Muiris MacCarthaigh
- Abstract要約: クラスタリングアルゴリズムは、異なるグループが異なるクラスタ内で不利になるようにクラスタを生成することができる。
我々は,古典的アルゴリズムに先駆けて,セントロイドクラスタリングパラダイムに基づくクラスタリングアルゴリズムを開発した。
本手法はクラスタレベルの表現性フェアネスを,クラスタのコヒーレンスに低い影響で向上させるのに有効であることを示す。
- 参考スコア(独自算出の注目度): 3.420467786581458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been much interest recently in developing fair clustering
algorithms that seek to do justice to the representation of groups defined
along sensitive attributes such as race and gender. We observe that clustering
algorithms could generate clusters such that different groups are disadvantaged
within different clusters. We develop a clustering algorithm, building upon the
centroid clustering paradigm pioneered by classical algorithms such as
$k$-means, where we focus on mitigating the unfairness experienced by the
most-disadvantaged group within each cluster. Our method uses an iterative
optimisation paradigm whereby an initial cluster assignment is modified by
reassigning objects to clusters such that the worst-off sensitive group within
each cluster is benefitted. We demonstrate the effectiveness of our method
through extensive empirical evaluations over a novel evaluation metric on
real-world datasets. Specifically, we show that our method is effective in
enhancing cluster-level group representativity fairness significantly at low
impact on cluster coherence.
- Abstract(参考訳): 最近は、人種や性別などのセンシティブな属性に沿って定義されたグループの表現を公正にしようとする、公正なクラスタリングアルゴリズムの開発に多くの関心が寄せられている。
クラスタリングアルゴリズムは、異なるグループが異なるクラスタ内で不利になるようなクラスタを生成することができる。
クラスタ化アルゴリズムを開発し,k$-means などの古典的アルゴリズムが開拓したセンタロイドクラスタリングパラダイムに基づいて,クラスタ内の不公平なグループによって経験される不公平さの軽減に重点を置く。
提案手法では,初期クラスタ割り当てをオブジェクトをクラスタに再割り当てすることで,各クラスタ内の最悪のセンシティブなグループに恩恵を与える,反復最適化パラダイムを用いる。
本手法の有効性を実世界のデータセット上での新たな評価指標を用いて実証評価を行った。
具体的には,クラスタコヒーレンスに対する影響の少ないクラスタレベルグループ表現性フェアネスの強化に有効であることを示す。
関連論文リスト
- From A-to-Z Review of Clustering Validation Indices [4.08908337437878]
我々は、最も一般的なクラスタリングアルゴリズムを用いて、内部および外部クラスタリング検証指標の性能をレビューし、評価する。
内部クラスタリング検証と外部クラスタリング検証の両方の機能を調べるための分類フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-18T13:52:02Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - DivClust: Controlling Diversity in Deep Clustering [47.85350249697335]
DivClustはコンセンサスクラスタリングソリューションを生成し、単一クラスタリングベースラインを一貫して上回る。
提案手法は, フレームワークやデータセット間の多様性を, 計算コストを極めて小さく効果的に制御する。
論文 参考訳(メタデータ) (2023-04-03T14:45:43Z) - Socially Fair Center-based and Linear Subspace Clustering [8.355270405285909]
センターベースのクラスタリングと線形サブスペースクラスタリングは、現実世界のデータを小さなクラスタに分割する一般的なテクニックである。
異なる敏感なグループに対する1点当たりのクラスタリングコストは、公平性に関連する害をもたらす可能性がある。
本稿では,社会的に公平なセンタベースのクラスタリングと線形サブスペースクラスタリングを解決するための統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-22T07:10:17Z) - Fair Labeled Clustering [28.297893914525517]
クラスタリングのダウンストリーム適用と,そのような設定に対してグループフェアネスをどのように確保するかを検討する。
このような問題に対するアルゴリズムを提供し、グループフェアクラスタリングにおけるNPハードのアルゴリズムとは対照的に、効率的な解が可能であることを示す。
また、距離空間における中心位置に関係なく、意思決定者が自由にクラスタにラベルを割り当てることができるような、モチベーションのよい代替設定についても検討する。
論文 参考訳(メタデータ) (2022-05-28T07:07:12Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Deep Fair Discriminative Clustering [24.237000220172906]
2値および多状態保護状態変数(PSV)に対するグループレベルの公正性の一般概念について検討する。
本稿では,クラスタリング目標とフェアネス目標とを組み合わせて,フェアクラスタを適応的に学習する改良学習アルゴリズムを提案する。
本フレームワークは, フレキシブルフェアネス制約, マルチステートPSV, 予測クラスタリングなど, 新規なクラスタリングタスクに対して有望な結果を示す。
論文 参考訳(メタデータ) (2021-05-28T23:50:48Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。