A Deep Learning Framework for Hybrid Beamforming Without Instantaneous
CSI Feedback
- URL: http://arxiv.org/abs/2006.10971v2
- Date: Sun, 16 Aug 2020 11:44:54 GMT
- Title: A Deep Learning Framework for Hybrid Beamforming Without Instantaneous
CSI Feedback
- Authors: Ahmet M. Elbir
- Abstract summary: We propose a deep learning (DL) framework to deal with both hybrid beamforming and channel estimation.
The proposed framework exhibits at least 10 times lower computational complexity as compared to the conventional optimization-based approaches.
- Score: 4.771833920251869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid beamformer design plays very crucial role in the next generation
millimeter-wave (mm-Wave) massive MIMO (multiple-input multiple-output)
systems. Previous works assume the perfect channel state information (CSI)
which results heavy feedback overhead. To lower complexity, channel statistics
can be utilized such that only infrequent update of the channel information is
needed. To reduce the complexity and provide robustness, in this work, we
propose a deep learning (DL) framework to deal with both hybrid beamforming and
channel estimation. For this purpose, we introduce three deep convolutional
neural network (CNN) architectures. We assume that the base station (BS) has
the channel statistics only and feeds the channel covariance matrix into a CNN
to obtain the hybrid precoders. At the receiver, two CNNs are employed. The
first one is used for channel estimation purposes and the another is employed
to design the hybrid combiners. The proposed DL framework does not require the
instantaneous feedback of the CSI at the BS. We have shown that the proposed
approach has higher spectral efficiency with comparison to the conventional
techniques. The trained CNN structures do not need to be re-trained due to the
changes in the propagation environment such as the deviations in the number of
received paths and the fluctuations in the received path angles up to 4
degrees. Also, the proposed DL framework exhibits at least 10 times lower
computational complexity as compared to the conventional optimization-based
approaches.
Related papers
- Towards Efficient Subarray Hybrid Beamforming: Attention Network-based
Practical Feedback in FDD Massive MU-MIMO Systems [9.320559153486885]
This paper introduces a jointly optimized network for channel estimation and feedback.
Experiments show that the proposed network is over 10 times lighter at the resource-sensitive user equipment.
arXiv Detail & Related papers (2023-02-05T15:12:07Z) - DeepTx: Deep Learning Beamforming with Channel Prediction [8.739166282613118]
In this study, we focus on machine learning algorithms for the transmitter.
We consider beamforming and propose a CNN which, for a given uplink channel estimate as input, outputs downlink channel information to be used for beamforming.
The main task of the neural network is to predict the channel evolution between uplink and downlink slots, but it can also learn to handle inefficiencies and errors in the whole chain.
arXiv Detail & Related papers (2022-02-16T11:19:54Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
We present a general channel pruning approach that can be applied to various complicated structures.
We derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels.
Our method can be used to prune any structures including those with coupled channels.
arXiv Detail & Related papers (2021-08-02T08:21:44Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
A novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels.
The transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design.
The non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities.
arXiv Detail & Related papers (2021-05-04T02:47:59Z) - Deep Learning-based Compressive Beam Alignment in mmWave Vehicular
Systems [75.77033270838926]
vehicular channels exhibit structure that can be exploited for beam alignment with fewer channel measurements.
We propose a deep learning-based technique to design a structured compressed sensing (CS) matrix.
arXiv Detail & Related papers (2021-02-27T04:38:12Z) - Machine Learning for MU-MIMO Receive Processing in OFDM Systems [14.118477167150143]
We propose an ML-enhanced MU-MIMO receiver that builds on top of a conventional linear minimum mean squared error (LMMSE) architecture.
CNNs are used to compute an approximation of the second-order statistics of the channel estimation error.
A CNN-based demapper jointly processes a large number of frequency-division multiplexing symbols and subcarriers.
arXiv Detail & Related papers (2020-12-15T09:55:37Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - Channel Equilibrium Networks for Learning Deep Representation [63.76618960820138]
This work shows that the combination of normalization and rectified linear function leads to inhibited channels.
Unlike prior arts that simply removed the inhibited channels, we propose to "wake them up" during training by designing a novel neural building block.
Channel Equilibrium (CE) block enables channels at the same layer to contribute equally to the learned representation.
arXiv Detail & Related papers (2020-02-29T09:02:31Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.