Towards Efficient Subarray Hybrid Beamforming: Attention Network-based
Practical Feedback in FDD Massive MU-MIMO Systems
- URL: http://arxiv.org/abs/2302.02401v1
- Date: Sun, 5 Feb 2023 15:12:07 GMT
- Title: Towards Efficient Subarray Hybrid Beamforming: Attention Network-based
Practical Feedback in FDD Massive MU-MIMO Systems
- Authors: Zhilin Lu, Xudong Zhang, Rui Zeng and Jintao Wang
- Abstract summary: This paper introduces a jointly optimized network for channel estimation and feedback.
Experiments show that the proposed network is over 10 times lighter at the resource-sensitive user equipment.
- Score: 9.320559153486885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Channel state information (CSI) feedback is necessary for the frequency
division duplexing (FDD) multiple input multiple output (MIMO) systems due to
the channel non-reciprocity. With the help of deep learning, many works have
succeeded in rebuilding the compressed ideal CSI for massive MIMO. However,
simple CSI reconstruction is of limited practicality since the channel
estimation and the targeted beamforming design are not considered. In this
paper, a jointly optimized network is introduced for channel estimation and
feedback so that a spectral-efficient beamformer can be learned. Moreover, the
deployment-friendly subarray hybrid beamforming architecture is applied and a
practical lightweight end-to-end network is specially designed. Experiments
show that the proposed network is over 10 times lighter at the
resource-sensitive user equipment compared with the previous state-of-the-art
method with only a minor performance loss.
Related papers
- TBSN: Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising [94.09442506816724]
Blind-spot networks (BSN) have been prevalent network architectures in self-supervised image denoising (SSID)
We present a transformer-based blind-spot network (TBSN) by analyzing and redesigning the transformer operators that meet the blind-spot requirement.
For spatial self-attention, an elaborate mask is applied to the attention matrix to restrict its receptive field, thus mimicking the dilated convolution.
For channel self-attention, we observe that it may leak the blind-spot information when the channel number is greater than spatial size in the deep layers of multi-scale architectures.
arXiv Detail & Related papers (2024-04-11T15:39:10Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - MIMO-DBnet: Multi-channel Input and Multiple Outputs DOA-aware
Beamforming Network for Speech Separation [55.533789120204055]
We propose an end-to-end beamforming network for direction guided speech separation given merely the mixture signal.
Specifically, we design a multi-channel input and multiple outputs architecture to predict the direction-of-arrival based embeddings and beamforming weights for each source.
arXiv Detail & Related papers (2022-12-07T01:52:40Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
We propose an AI-based CSI feedback based on an auto-encoder architecture that encodes the CSI at UE into a low-dimensional latent space and decodes it back at the base station.
Our simulation results show that the AI-based proposed architecture outperforms the state-of-the-art high-resolution linear combination codebook.
arXiv Detail & Related papers (2022-02-02T19:04:49Z) - CSI Feedback with Model-Driven Deep Learning of Massive MIMO Systems [0.0]
We propose a two stages low rank (TSLR) CSI feedback scheme to reduce the feedback overhead based on model-driven deep learning.
Besides, we design a deep iterative neural network, named FISTA-Net, by unfolding the fast iterative shrinkage thresholding algorithm (FISTA) to achieve more efficient CSI feedback.
arXiv Detail & Related papers (2021-12-13T03:50:43Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Binarized Aggregated Network with Quantization: Flexible Deep Learning
Deployment for CSI Feedback in Massive MIMO System [22.068682756598914]
A novel network named aggregated channel reconstruction network (ACRNet) is designed to boost the feedback performance.
The elastic feedback scheme is proposed to flexibly adapt the network to meet different resource limitations.
Experiments show that the proposed ACRNet outperforms loads of previous state-of-the-art networks.
arXiv Detail & Related papers (2021-05-01T22:50:25Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - A Deep Learning Framework for Hybrid Beamforming Without Instantaneous
CSI Feedback [4.771833920251869]
We propose a deep learning (DL) framework to deal with both hybrid beamforming and channel estimation.
The proposed framework exhibits at least 10 times lower computational complexity as compared to the conventional optimization-based approaches.
arXiv Detail & Related papers (2020-06-19T05:47:25Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.