論文の概要: A Survey of Syntactic-Semantic Parsing Based on Constituent and
Dependency Structures
- arxiv url: http://arxiv.org/abs/2006.11056v1
- Date: Fri, 19 Jun 2020 10:21:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 04:40:55.894622
- Title: A Survey of Syntactic-Semantic Parsing Based on Constituent and
Dependency Structures
- Title(参考訳): 構成構造と依存構造に基づく統語・統語構文解析
- Authors: Meishan Zhang
- Abstract要約: 我々は、構文解析の最も一般的な2つの形式、すなわち構成解析と依存性解析に焦点を当てている。
本稿では、構成解析と依存性解析の代表モデルと、リッチセマンティクスによる依存性解析について概説する。
- 参考スコア(独自算出の注目度): 14.714725860010724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Syntactic and semantic parsing has been investigated for decades, which is
one primary topic in the natural language processing community. This article
aims for a brief survey on this topic. The parsing community includes many
tasks, which are difficult to be covered fully. Here we focus on two of the
most popular formalizations of parsing: constituent parsing and dependency
parsing. Constituent parsing is majorly targeted to syntactic analysis, and
dependency parsing can handle both syntactic and semantic analysis. This
article briefly reviews the representative models of constituent parsing and
dependency parsing, and also dependency graph parsing with rich semantics.
Besides, we also review the closely-related topics such as cross-domain,
cross-lingual and joint parsing models, parser application as well as corpus
development of parsing in the article.
- Abstract(参考訳): 構文解析と意味解析は数十年にわたって研究されてきたが、これは自然言語処理コミュニティにおける主要なトピックである。
この記事では、このトピックに関する簡単な調査を目指しています。
パースコミュニティには多くのタスクが含まれており、完全にカバーすることは難しい。
ここでは構文解析の最も一般的な形式化である構成構文解析と依存関係解析の2つに焦点を当てる。
構成解析は主に構文解析を対象とし、依存解析は構文解析と意味解析の両方を扱うことができる。
本稿では、構成解析と依存性解析の代表モデルと、リッチセマンティクスを用いた依存性グラフ解析について概説する。
さらに,クロスドメイン,クロスランガル,ジョイントパースモデル,パーサアプリケーション,コーパス解析のコーパス開発など,密接に関連するトピックについてもレビューする。
関連論文リスト
- Integrating Supertag Features into Neural Discontinuous Constituent Parsing [0.0]
伝統的な選挙区の見解では、構成要素は隣接した単語で構成されており、ドイツ語のような言語で一般的である。
トランジションベースの構文解析は、大きな注釈付きコーパス上で教師あり学習を用いて生のテキストを入力した木を生成する。
論文 参考訳(メタデータ) (2024-10-11T12:28:26Z) - Urdu Dependency Parsing and Treebank Development: A Syntactic and Morphological Perspective [0.0]
依存関係解析を用いて、ウルドゥー語でニュース記事を分析する。
最良ラベル付き精度(LA)は70%,未ラベル付きアタッチメントスコア(UAS)は84%であった。
論文 参考訳(メタデータ) (2024-06-13T19:30:32Z) - Structural Ambiguity and its Disambiguation in Language Model Based
Parsers: the Case of Dutch Clause Relativization [2.9950872478176627]
先行文の存在が相対的節の曖昧さをいかに解決するかを考察する。
その結果、証明ネットに基づくニューロシンボリックは、普遍的な依存関係に基づくアプローチよりも、データ偏差補正に対してよりオープンであることが示された。
論文 参考訳(メタデータ) (2023-05-24T09:04:18Z) - Sparse Fuzzy Attention for Structured Sentiment Analysis [48.69930912510414]
本研究では,プール層を有するスパース・ファジィアテンションスコアラを提案する。
さらに,2次解析を用いた構造化感情分析における解析モデルについて検討し,解析性能を著しく向上させる新しい2次エッジ構築手法を提案する。
論文 参考訳(メタデータ) (2021-09-14T14:37:56Z) - Syntactic Nuclei in Dependency Parsing -- A Multilingual Exploration [8.25332300240617]
本稿では,核の概念を普遍依存の枠組みで定義する方法について述べる。
12言語の実験では、核組成は解析精度が小さいが顕著に向上していることが示された。
論文 参考訳(メタデータ) (2021-01-28T12:22:30Z) - Context Dependent Semantic Parsing: A Survey [56.69006903481575]
意味解析は、自然言語の発話を機械可読な意味表現に変換するタスクである。
現在、ほとんどの意味解析手法は文脈情報を利用することができない。
この問題に対処するため、コンテキスト依存のセマンティック解析が最近多くの注目を集めている。
論文 参考訳(メタデータ) (2020-11-02T07:51:05Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - A Survey of Unsupervised Dependency Parsing [62.16714720135358]
教師なしの依存関係解析は、正しいパースツリーのアノテーションを持たない文から依存関係を学ぶことを目的としている。
その困難さにもかかわらず、教師なしの構文解析は、ほとんど無制限に注釈のないテキストデータを利用することができるため、興味深い研究方向である。
論文 参考訳(メタデータ) (2020-10-04T10:51:22Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z) - Hierarchical Human Parsing with Typed Part-Relation Reasoning [179.64978033077222]
このタスクでは、人体構造をモデル化する方法が中心的なテーマである。
深層グラフネットワークの表現能力と階層的人間構造を同時に活用することを模索する。
論文 参考訳(メタデータ) (2020-03-10T16:45:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。