論文の概要: Integrating Supertag Features into Neural Discontinuous Constituent Parsing
- arxiv url: http://arxiv.org/abs/2410.08766v1
- Date: Fri, 11 Oct 2024 12:28:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:15:28.767135
- Title: Integrating Supertag Features into Neural Discontinuous Constituent Parsing
- Title(参考訳): スーパータグの特徴をニューラル不連続なconstituent Parsingに統合する
- Authors: Lukas Mielczarek,
- Abstract要約: 伝統的な選挙区の見解では、構成要素は隣接した単語で構成されており、ドイツ語のような言語で一般的である。
トランジションベースの構文解析は、大きな注釈付きコーパス上で教師あり学習を用いて生のテキストを入力した木を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Syntactic parsing is essential in natural-language processing, with constituent structure being one widely used description of syntax. Traditional views of constituency demand that constituents consist of adjacent words, but this poses challenges in analysing syntax with non-local dependencies, common in languages like German. Therefore, in a number of treebanks like NeGra and TIGER for German and DPTB for English, long-range dependencies are represented by crossing edges. Various grammar formalisms have been used to describe discontinuous trees - often with high time complexities for parsing. Transition-based parsing aims at reducing this factor by eliminating the need for an explicit grammar. Instead, neural networks are trained to produce trees given raw text input using supervised learning on large annotated corpora. An elegant proposal for a stack-free transition-based parser developed by Coavoux and Cohen (2019) successfully allows for the derivation of any discontinuous constituent tree over a sentence in worst-case quadratic time. The purpose of this work is to explore the introduction of supertag information into transition-based discontinuous constituent parsing. In lexicalised grammar formalisms like CCG (Steedman, 1989) informative categories are assigned to the words in a sentence and act as the building blocks for composing the sentence's syntax. These supertags indicate a word's structural role and syntactic relationship with surrounding items. The study examines incorporating supertag information by using a dedicated supertagger as additional input for a neural parser (pipeline) and by jointly training a neural model for both parsing and supertagging (multi-task). In addition to CCG, several other frameworks (LTAG-spinal, LCFRS) and sequence labelling tasks (chunking, dependency parsing) will be compared in terms of their suitability as auxiliary tasks for parsing.
- Abstract(参考訳): 構文解析は自然言語処理において必須であり、構成構造は構文の記述として広く使われている。
伝統的な選挙区の見解では、構成要素は隣接した単語で構成されていることが要求されるが、これはドイツ語のような言語に共通する非局所的な依存関係による構文の分析において困難を生じさせる。
そのため、ドイツ語のNeGraやTIGER、英語のDPTBのような多くのツリーバンクでは、長距離依存は横断エッジによって表現される。
様々な文法形式は不連続な木を記述するために使われてきた。
トランジションベースの構文解析は、明示的な文法の必要性を排除して、この要因を減らすことを目的としている。
代わりに、ニューラルネットワークは、大きな注釈付きコーパスで教師付き学習を使用して、生テキスト入力が与えられた木を生成するように訓練される。
Coavoux と Cohen (2019) によって開発されたスタックフリーな遷移型構文解析器のエレガントな提案は、最悪の2次時間における文上の不連続な構成木を導出することに成功している。
本研究の目的は,遷移型不連続成分解析へのスーパータグ情報の導入を検討することである。
CCG(Steedman, 1989)のような語彙化された文法形式では、情報カテゴリーは文中の単語に割り当てられ、文の構文を構成するためのビルディングブロックとして機能する。
これらのスーパータグは単語の構造的役割と周囲のアイテムとの構文的関係を示す。
本研究は,ニューラルパーサ(ピペリン)の追加入力として専用スーパータガーを使用し,パーシングとスーパータグ(マルチタスク)の両方のためのニューラルモデルの共同トレーニングを行うことにより,スーパータグ情報を組み込むことを検討した。
CCGに加えて、いくつかのフレームワーク(LTAG-spinal、LCFRS)やシーケンスラベリングタスク(チャンキング、依存性解析)も、解析の補助タスクとして適合性を比較する。
関連論文リスト
- Urdu Dependency Parsing and Treebank Development: A Syntactic and Morphological Perspective [0.0]
依存関係解析を用いて、ウルドゥー語でニュース記事を分析する。
最良ラベル付き精度(LA)は70%,未ラベル付きアタッチメントスコア(UAS)は84%であった。
論文 参考訳(メタデータ) (2024-06-13T19:30:32Z) - Syntactic Language Change in English and German: Metrics, Parsers, and Convergences [56.47832275431858]
本論文は,過去160年間の議会討論のコーパスを用いて,英語とドイツ語の統語的言語変化のダイアクロニックな傾向を考察する。
私たちは、広く使われているStanford Coreと、新しい4つの選択肢を含む5つの依存関係をベースとしています。
文長分布の尾部では,構文的尺度の変化が頻繁であることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-18T11:46:16Z) - Assessment of Pre-Trained Models Across Languages and Grammars [7.466159270333272]
シーケンスラベリングとしてパースをキャストすることで,構成構造と依存性構造を復元することを目的としている。
その結果、事前学習された単語ベクトルは、依存関係よりも構文の連続表現を好まないことが明らかとなった。
プレトレーニングデータ中の言語の発生は、単語ベクトルから構文を回復する際のタスクデータ量よりも重要である。
論文 参考訳(メタデータ) (2023-09-20T09:23:36Z) - SPINDLE: Spinning Raw Text into Lambda Terms with Graph Attention [0.8379286663107844]
モジュールは、原文入力をラムダ項で表現された意味合成のためのプログラムに変換する。
その出力は多モーダル型論理文法の階層的導出から成り立っている。
論文 参考訳(メタデータ) (2023-02-23T14:22:45Z) - Incorporating Constituent Syntax for Coreference Resolution [50.71868417008133]
本稿では,構成構文構造をグラフベースで組み込む手法を提案する。
また、高次近傍情報を利用して構成木に富んだ構造をエンコードすることも検討する。
on the English and Chinese parts of OntoNotes 5.0 benchmark shows that our proposed model beats a strong baseline or a new-of-the-art performance。
論文 参考訳(メタデータ) (2022-02-22T07:40:42Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - Syntactic representation learning for neural network based TTS with
syntactic parse tree traversal [49.05471750563229]
本稿では,構文解析木に基づく構文表現学習手法を提案し,構文構造情報を自動的に活用する。
実験の結果,提案手法の有効性が示された。
複数の構文解析木を持つ文では、合成音声から韻律的差異が明確に認識される。
論文 参考訳(メタデータ) (2020-12-13T05:52:07Z) - Strongly Incremental Constituency Parsing with Graph Neural Networks [70.16880251349093]
文を構文木にパースすることは、NLPの下流アプリケーションに恩恵をもたらす。
トランジッションベースは、状態遷移システムでアクションを実行することでツリーを構築する。
既存のトランジションベースは主にシフト・リデュース・トランジション・システムに基づいている。
論文 参考訳(メタデータ) (2020-10-27T19:19:38Z) - Span-based Semantic Parsing for Compositional Generalization [53.24255235340056]
SpanBasedSPは入力発話上のスパンツリーを予測し、部分的なプログラムが入力内のスパンをどのように構成するかを明示的に符号化する。
GeoQuery、SCAN、CLOSUREでは、SpanBasedSPはランダムスプリットの強いseq2seqベースラインと似ているが、構成一般化を必要とするスプリットのベースラインに比べて劇的に性能が向上する。
論文 参考訳(メタデータ) (2020-09-13T16:42:18Z) - Discontinuous Constituent Parsing with Pointer Networks [0.34376560669160383]
不連続な構成木は、ドイツ語のような言語の文法的な現象を表現するのに不可欠である。
係り受け解析の最近の進歩は、ポインタネットワークが文中の単語間の構文関係を効率的に解析することに優れていることを示している。
本稿では,最も正確な不連続な構成表現を生成するニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-05T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。