論文の概要: Contextual and Possibilistic Reasoning for Coalition Formation
- arxiv url: http://arxiv.org/abs/2006.11097v2
- Date: Tue, 6 Oct 2020 18:45:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 05:07:56.910521
- Title: Contextual and Possibilistic Reasoning for Coalition Formation
- Title(参考訳): 連成形成における文脈的・可能性的推論
- Authors: Antonis Bikakis, Patrice Caire
- Abstract要約: 本稿では,マルチエージェントシステムにおけるエージェント間の連立関係の発見と評価について論じる。
まず、文脈的推論手法を用いて連立関係形成のための解空間を計算する。
第2に、エージェントをマルチコンテキストシステム(MCS)のコンテキストとしてモデル化し、エージェント間の依存関係をブリッジルールとしてモデル化する。
第3に、MCS均衡のためのアルゴリズムを用いて、すべての潜在的な連立性を体系的に計算し、機能的および非機能的要件のセットを与えられた上で、最適な解を選択する方法を提案する。
- 参考スコア(独自算出の注目度): 0.9790236766474201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multiagent systems, agents often have to rely on other agents to reach
their goals, for example when they lack a needed resource or do not have the
capability to perform a required action. Agents therefore need to cooperate.
Then, some of the questions raised are: Which agent(s) to cooperate with? What
are the potential coalitions in which agents can achieve their goals? As the
number of possibilities is potentially quite large, how to automate the
process? And then, how to select the most appropriate coalition, taking into
account the uncertainty in the agents' abilities to carry out certain tasks? In
this article, we address the question of how to find and evaluate coalitions
among agents in multiagent systems using MCS tools, while taking into
consideration the uncertainty around the agents' actions. Our methodology is
the following: We first compute the solution space for the formation of
coalitions using a contextual reasoning approach. Second, we model agents as
contexts in Multi-Context Systems (MCS), and dependence relations among agents
seeking to achieve their goals, as bridge rules. Third, we systematically
compute all potential coalitions using algorithms for MCS equilibria, and given
a set of functional and non-functional requirements, we propose ways to select
the best solutions. Finally, in order to handle the uncertainty in the agents'
actions, we extend our approach with features of possibilistic reasoning. We
illustrate our approach with an example from robotics.
- Abstract(参考訳): マルチエージェントシステムでは、エージェントは必要なリソースが不足している場合や必要なアクションを実行する能力がない場合など、目標を達成するために他のエージェントに依存する必要があることが多い。
エージェントは協力する必要がある。
では、疑問が浮かび上がってくる。 どのエージェントと協力するべきなのか?
エージェントが目標を達成するための、潜在的な連合とは何か?
可能性の数がとても多いので、どうやってプロセスを自動化するのか?
そして、エージェントが特定のタスクを実行する能力の不確実性を考慮して、最も適切な連立をどうやって選ぶのか?
本稿では,MSSツールを用いたマルチエージェントシステムにおけるエージェント間の連立関係の発見と評価について,エージェントの行動に関する不確実性を考慮して検討する。
私たちはまず、文脈的推論アプローチを用いて、連立の形成のためのソリューション空間を計算します。
第2に、エージェントをマルチコンテキストシステム(MCS)のコンテキストとしてモデル化し、エージェント間の依存関係をブリッジルールとしてモデル化する。
第3に,mcs平衡のアルゴリズムを用いて,すべての潜在的連立を体系的に計算し,機能的および非機能的要件を満たし,最適な解を選択する方法を提案する。
最後に,エージェントの行動の不確実性に対処するため,確率論的推論の特徴を用いてアプローチを拡張した。
ロボット工学の例を例に紹介する。
関連論文リスト
- Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
本稿では,マルコフ決定プロセス(MDP)のエージェントを一連の契約でガイドするフレームワークを提案する。
我々は,主観とエージェントの方針を反復的に最適化するメタアルゴリズムを提示し,分析する。
次に,本アルゴリズムを深層Q-ラーニングで拡張し,近似誤差の存在下での収束度を解析する。
論文 参考訳(メタデータ) (2024-07-25T14:28:58Z) - Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination [16.74629849552254]
本稿では,複数のエージェントを協調するモデルに基づくコンセンサス機構を提案する。
提案したMulti-Adnt Goal Imagination (MAGI) フレームワークは、エージェントがImagined Common goalとコンセンサスに達するためのガイドである。
このような効率的なコンセンサス機構は、すべてのエージェントを協調して有用な将来状態に導くことができることを示す。
論文 参考訳(メタデータ) (2024-03-05T18:07:34Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
大規模言語モデル(LLM)によって駆動されるマルチエージェントシステムは、複雑なタスクを協調的に解決する有望な能力を示している。
この研究は、マルチエージェントコラボレーションにおける根本的な問題であるコンセンサス探索について考察する。
論文 参考訳(メタデータ) (2023-10-31T03:37:11Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
ToMとエージェント間の効果的な協調を開発するための適応的学習アルゴリズムを提案する。
アルゴリズムはToMをモデル化せずに従来の分散実行アルゴリズムを全て上回る2つのゲームで評価する。
論文 参考訳(メタデータ) (2021-09-30T23:28:00Z) - DSDF: An approach to handle stochastic agents in collaborative
multi-agent reinforcement learning [0.0]
ロボットの機能低下や老化によって引き起こされるエージェントの真偽が、協調の不確実性にどのように寄与するかを示す。
DSDFは不確実性に応じてエージェントの割引係数を調整し,その値を用いて個々のエージェントのユーティリティネットワークを更新する。
論文 参考訳(メタデータ) (2021-09-14T12:02:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。