iSeeBetter: Spatio-temporal video super-resolution using recurrent
generative back-projection networks
- URL: http://arxiv.org/abs/2006.11161v4
- Date: Wed, 30 Sep 2020 00:45:38 GMT
- Title: iSeeBetter: Spatio-temporal video super-resolution using recurrent
generative back-projection networks
- Authors: Aman Chadha, John Britto, and M. Mani Roja
- Abstract summary: We present iSeeBetter, a novel GAN-based structural-temporal approach to video super-resolution (VSR)
iSeeBetter extracts spatial and temporal information from the current and neighboring frames using the concept of recurrent back-projection networks as its generator.
Our results demonstrate that iSeeBetter offers superior VSR fidelity and surpasses state-of-the-art performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, learning-based models have enhanced the performance of single-image
super-resolution (SISR). However, applying SISR successively to each video
frame leads to a lack of temporal coherency. Convolutional neural networks
(CNNs) outperform traditional approaches in terms of image quality metrics such
as peak signal to noise ratio (PSNR) and structural similarity (SSIM). However,
generative adversarial networks (GANs) offer a competitive advantage by being
able to mitigate the issue of a lack of finer texture details, usually seen
with CNNs when super-resolving at large upscaling factors. We present
iSeeBetter, a novel GAN-based spatio-temporal approach to video
super-resolution (VSR) that renders temporally consistent super-resolution
videos. iSeeBetter extracts spatial and temporal information from the current
and neighboring frames using the concept of recurrent back-projection networks
as its generator. Furthermore, to improve the "naturality" of the
super-resolved image while eliminating artifacts seen with traditional
algorithms, we utilize the discriminator from super-resolution generative
adversarial network (SRGAN). Although mean squared error (MSE) as a primary
loss-minimization objective improves PSNR/SSIM, these metrics may not capture
fine details in the image resulting in misrepresentation of perceptual quality.
To address this, we use a four-fold (MSE, perceptual, adversarial, and
total-variation (TV)) loss function. Our results demonstrate that iSeeBetter
offers superior VSR fidelity and surpasses state-of-the-art performance.
Related papers
- Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - STIP: A SpatioTemporal Information-Preserving and Perception-Augmented
Model for High-Resolution Video Prediction [78.129039340528]
We propose a Stemporal Information-Preserving and Perception-Augmented Model (STIP) to solve the above two problems.
The proposed model aims to preserve thetemporal information for videos during the feature extraction and the state transitions.
Experimental results show that the proposed STIP can predict videos with more satisfactory visual quality compared with a variety of state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T09:49:04Z) - Image Super-resolution with An Enhanced Group Convolutional Neural
Network [102.2483249598621]
CNNs with strong learning abilities are widely chosen to resolve super-resolution problem.
We present an enhanced super-resolution group CNN (ESRGCNN) with a shallow architecture.
Experiments report that our ESRGCNN surpasses the state-of-the-arts in terms of SISR performance, complexity, execution speed, image quality evaluation and visual effect in SISR.
arXiv Detail & Related papers (2022-05-29T00:34:25Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - Deep Networks for Image and Video Super-Resolution [30.75380029218373]
Single image super-resolution (SISR) is built using efficient convolutional units we refer to as mixed-dense connection blocks (MDCB)
We train two versions of our network to enhance complementary image qualities using different loss configurations.
We further employ our network for super-resolution task, where our network learns to aggregate information from multiple frames and maintain-temporal consistency.
arXiv Detail & Related papers (2022-01-28T09:15:21Z) - Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution [52.899234731501075]
Space-time video super-resolution (ST-VSR) simultaneously increases the spatial resolution and frame rate for a given video.
Existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames.
We propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames.
arXiv Detail & Related papers (2021-10-13T15:21:30Z) - Deep Unrolled Network for Video Super-Resolution [0.45880283710344055]
Video super-resolution (VSR) aims to reconstruct a sequence of high-resolution (HR) images from their corresponding low-resolution (LR) versions.
Traditionally, solving a VSR problem has been based on iterative algorithms that exploit prior knowledge on image formation and assumptions on the motion.
Deep learning (DL) algorithms can efficiently learn spatial patterns from large collections of images.
We propose a new VSR neural network based on unrolled optimization techniques and discuss its performance.
arXiv Detail & Related papers (2021-02-23T14:35:09Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Residual Channel Attention Generative Adversarial Network for Image
Super-Resolution and Noise Reduction [14.217260022873083]
As the deep networks go deeper, they become more difficult to train and more difficult to restore the finer texture details.
We propose a Residual Channel Attention-Generative Adversarial Network (RCA-GAN) to solve these problems.
RCA-GAN yields consistently better visual quality with more detailed and natural textures than baseline models.
arXiv Detail & Related papers (2020-04-28T17:23:46Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.