Deep Unrolled Network for Video Super-Resolution
- URL: http://arxiv.org/abs/2102.11720v1
- Date: Tue, 23 Feb 2021 14:35:09 GMT
- Title: Deep Unrolled Network for Video Super-Resolution
- Authors: Benjamin Naoto Chiche, Arnaud Woiselle, Joana Frontera-Pons and
Jean-Luc Starck
- Abstract summary: Video super-resolution (VSR) aims to reconstruct a sequence of high-resolution (HR) images from their corresponding low-resolution (LR) versions.
Traditionally, solving a VSR problem has been based on iterative algorithms that exploit prior knowledge on image formation and assumptions on the motion.
Deep learning (DL) algorithms can efficiently learn spatial patterns from large collections of images.
We propose a new VSR neural network based on unrolled optimization techniques and discuss its performance.
- Score: 0.45880283710344055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video super-resolution (VSR) aims to reconstruct a sequence of
high-resolution (HR) images from their corresponding low-resolution (LR)
versions. Traditionally, solving a VSR problem has been based on iterative
algorithms that can exploit prior knowledge on image formation and assumptions
on the motion. However, these classical methods struggle at incorporating
complex statistics from natural images. Furthermore, VSR has recently benefited
from the improvement brought by deep learning (DL) algorithms. These techniques
can efficiently learn spatial patterns from large collections of images. Yet,
they fail to incorporate some knowledge about the image formation model, which
limits their flexibility. Unrolled optimization algorithms, developed for
inverse problems resolution, allow to include prior information into deep
learning architectures. They have been used mainly for single image restoration
tasks. Adapting an unrolled neural network structure can bring the following
benefits. First, this may increase performance of the super-resolution task.
Then, this gives neural networks better interpretability. Finally, this allows
flexibility in learning a single model to nonblindly deal with multiple
degradations. In this paper, we propose a new VSR neural network based on
unrolled optimization techniques and discuss its performance.
Related papers
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
arXiv Detail & Related papers (2022-11-17T11:06:29Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
arXiv Detail & Related papers (2021-05-21T15:47:18Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution.
We propose a new image restoration framework that is based on minimizing a loss function that includes a "projected-version" of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN.
arXiv Detail & Related papers (2021-02-04T08:52:46Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - iSeeBetter: Spatio-temporal video super-resolution using recurrent
generative back-projection networks [0.0]
We present iSeeBetter, a novel GAN-based structural-temporal approach to video super-resolution (VSR)
iSeeBetter extracts spatial and temporal information from the current and neighboring frames using the concept of recurrent back-projection networks as its generator.
Our results demonstrate that iSeeBetter offers superior VSR fidelity and surpasses state-of-the-art performance.
arXiv Detail & Related papers (2020-06-13T01:36:30Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z) - Self-supervised Fine-tuning for Correcting Super-Resolution
Convolutional Neural Networks [17.922507191213494]
We show that one can avoid training and correct for SR results with a fully self-supervised fine-tuning approach.
We apply our fine-tuning algorithm on multiple image and video SR CNNs and show that it can successfully correct for a sub-optimal SR solution.
arXiv Detail & Related papers (2019-12-30T11:02:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.