Improving the accuracy of quantum computational chemistry using the
transcorrelated method
- URL: http://arxiv.org/abs/2006.11181v1
- Date: Fri, 19 Jun 2020 15:15:07 GMT
- Title: Improving the accuracy of quantum computational chemistry using the
transcorrelated method
- Authors: Sam McArdle, David P. Tew
- Abstract summary: We show that the transcorrelated method can reduce the resources required to obtain accurate energies from electronic structure calculations on quantum computers.
We overcome the limitations introduced by the non-Hermitian Hamiltonian by using quantum algorithms for imaginary time evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately treating electron correlation in the wavefunction is a key
challenge for both classical and quantum computational chemistry. Classical
methods have been developed which explicitly account for this correlation by
incorporating inter-electronic distances into the wavefunction. The
transcorrelated method transfers this explicit correlation from the
wavefunction to a transformed, non-Hermitian Hamiltonian, whose right-hand
eigenvectors become easier to obtain than those of the original Hamiltonian. In
this work, we show that the transcorrelated method can reduce the resources
required to obtain accurate energies from electronic structure calculations on
quantum computers. We overcome the limitations introduced by the non-Hermitian
Hamiltonian by using quantum algorithms for imaginary time evolution.
Related papers
- Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Say NO to Optimization: A Non-Orthogonal Quantum Eigensolver [0.0]
A balanced description of both static and dynamic correlations in electronic systems with nearly degenerate low-lying states presents a challenge for multi-configurational methods on classical computers.
We present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-quality wavefunction ans"atze.
arXiv Detail & Related papers (2022-05-18T16:20:36Z) - Reducing circuit depth in adaptive variational quantum algorithms via
effective Hamiltonian theories [8.24048506727803]
We introduce a new transformation in the form of a product of a linear combination of excitation operators to construct the effective Hamiltonian with finite terms.
The effective Hamiltonian defined with this new transformation is incorporated into the adaptive variational quantum algorithms to maintain constant-size quantum circuits.
arXiv Detail & Related papers (2022-01-23T09:38:46Z) - Orders of magnitude reduction in the computational overhead for quantum
many-body problems on quantum computers via an exact transcorrelated method [0.0]
We show that the Hamiltonian becomes non-Hermitian, posing problems for quantum algorithms based on the variational principle.
We overcome these limitations with the ansatz-based quantum imaginary time evolution algorithm.
Our work paves the way for the use of exact transcorrelated methods for the simulations of ab initio systems on quantum computers.
arXiv Detail & Related papers (2022-01-09T16:37:32Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum simulation of electronic structure with a transcorrelated
Hamiltonian: improved accuracy with a smaller footprint on the quantum
computer [2.640996411999115]
Quantum simulations of electronic structure with a transformed Hamiltonian that includes some electron correlation effects are demonstrated.
A transcorrelated Hamiltonian, paired with extremely compact bases, produces explicitly correlated energies comparable to those from much larger bases.
The use of the very compact transcorrelated Hamiltonian reduces the number of CNOT gates required to achieve cc-pVTZ quality by up to two orders of magnitude, and the number qubits by a factor of three.
arXiv Detail & Related papers (2020-06-03T19:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.