Modelling Agent Policies with Interpretable Imitation Learning
- URL: http://arxiv.org/abs/2006.11309v1
- Date: Fri, 19 Jun 2020 18:19:08 GMT
- Title: Modelling Agent Policies with Interpretable Imitation Learning
- Authors: Tom Bewley, Jonathan Lawry, Arthur Richards
- Abstract summary: We outline an approach to imitation learning for reverse-engineering black box agent policies in MDP environments.
We explicitly model and learn agents' latent state representations by selecting from a large space of candidate features constructed from the Markov state.
- Score: 12.858982225307809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As we deploy autonomous agents in safety-critical domains, it becomes
important to develop an understanding of their internal mechanisms and
representations. We outline an approach to imitation learning for
reverse-engineering black box agent policies in MDP environments, yielding
simplified, interpretable models in the form of decision trees. As part of this
process, we explicitly model and learn agents' latent state representations by
selecting from a large space of candidate features constructed from the Markov
state. We present initial promising results from an implementation in a
multi-agent traffic environment.
Related papers
- R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
We introduce prior preference learning techniques and self-revision schedules to help the agent excel in sparse-reward, continuous action, goal-based robotic control POMDP environments.
We show that our agents offer improved performance over state-of-the-art models in terms of cumulative rewards, relative stability, and success rate.
arXiv Detail & Related papers (2024-09-21T18:32:44Z) - Process Modeling With Large Language Models [42.0652924091318]
This paper explores the integration of Large Language Models (LLMs) into process modeling.
We propose a framework that leverages LLMs for the automated generation and iterative refinement of process models.
Preliminary results demonstrate the framework's ability to streamline process modeling tasks.
arXiv Detail & Related papers (2024-03-12T11:27:47Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - Differential Assessment of Black-Box AI Agents [29.98710357871698]
We propose a novel approach to differentially assess black-box AI agents that have drifted from their previously known models.
We leverage sparse observations of the drifted agent's current behavior and knowledge of its initial model to generate an active querying policy.
Empirical evaluation shows that our approach is much more efficient than re-learning the agent model from scratch.
arXiv Detail & Related papers (2022-03-24T17:48:58Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Feature-Based Interpretable Reinforcement Learning based on
State-Transition Models [3.883460584034766]
Growing concerns regarding the operational usage of AI models in the real-world has caused a surge of interest in explaining AI models' decisions to humans.
We propose a method for offering local explanations on risk in reinforcement learning.
arXiv Detail & Related papers (2021-05-14T23:43:11Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - Agent Modelling under Partial Observability for Deep Reinforcement
Learning [12.903487594031276]
Existing methods for agent modelling assume knowledge of the local observations and chosen actions of the modelled agents during execution.
We learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent.
The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning.
arXiv Detail & Related papers (2020-06-16T18:43:42Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework.
We develop a Decentralized Adrial Imitation Learning algorithm with Correlated policies (CoDAIL)
Various experiments demonstrate that CoDAIL can better regenerate complex interactions close to the demonstrators.
arXiv Detail & Related papers (2020-01-04T17:31:53Z) - Asking the Right Questions: Learning Interpretable Action Models Through
Query Answering [33.08099403894141]
This paper develops a new approach for estimating an interpretable, relational model of a black-box autonomous agent that can plan and act.
Our main contributions are a new paradigm for estimating such models using a minimal query interface with the agent, and a hierarchical querying algorithm that generates an interrogation policy for estimating the agent's internal model.
arXiv Detail & Related papers (2019-12-29T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.