Colorectal Polyp Segmentation by U-Net with Dilation Convolution
- URL: http://arxiv.org/abs/1912.11947v1
- Date: Thu, 26 Dec 2019 23:27:18 GMT
- Title: Colorectal Polyp Segmentation by U-Net with Dilation Convolution
- Authors: Xinzi Sun, Pengfei Zhang, Dechun Wang, Yu Cao, Benyuan Liu
- Abstract summary: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a leading cause of cancer deaths in the United States.
Currently, the most common way for colorectal polyp detection and precancerous pathology is the colonoscopy.
We propose a novel end-to-end deep learning framework for the colorectal polyp segmentation.
- Score: 9.840695333927496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a
leading cause of cancer deaths in the United States. Colorectal polyps that
grow on the intima of the colon or rectum is an important precursor for CRC.
Currently, the most common way for colorectal polyp detection and precancerous
pathology is the colonoscopy. Therefore, accurate colorectal polyp segmentation
during the colonoscopy procedure has great clinical significance in CRC early
detection and prevention. In this paper, we propose a novel end-to-end deep
learning framework for the colorectal polyp segmentation. The model we design
consists of an encoder to extract multi-scale semantic features and a decoder
to expand the feature maps to a polyp segmentation map. We improve the feature
representation ability of the encoder by introducing the dilated convolution to
learn high-level semantic features without resolution reduction. We further
design a simplified decoder which combines multi-scale semantic features with
fewer parameters than the traditional architecture. Furthermore, we apply three
post processing techniques on the output segmentation map to improve colorectal
polyp detection performance. Our method achieves state-of-the-art results on
CVC-ClinicDB and ETIS-Larib Polyp DB.
Related papers
- EPPS: Advanced Polyp Segmentation via Edge Information Injection and Selective Feature Decoupling [5.453850739960517]
We propose a novel model named Edge-Prioritized Polyp (EPPS)
Specifically, we incorporate an Edge Mapping Engine (EME) aimed at accurately extracting the edges of polyps.
We also introduce a component called Selective Feature Decoupler (SFD) to suppress the influence of noise and extraneous features on the model.
arXiv Detail & Related papers (2024-05-20T07:41:04Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
We propose a boosted BoxPolyp model to make full use of both accurate mask and extra coarse box annotations.
In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models.
Our proposed model outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-12-07T07:45:50Z) - Stepwise Feature Fusion: Local Guides Global [14.394421688712052]
We propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models.
Our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and attention dispersion.
arXiv Detail & Related papers (2022-03-07T10:36:38Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation [17.8181080354116]
We propose a feature enhancement network for accurate polyp segmentation in colonoscopy images.
Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM)
The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.
arXiv Detail & Related papers (2021-05-03T16:46:26Z) - AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation [0.0]
This paper proposes a novel neural network architecture called AG-CUResNeSt, which enhances Coupled UNets using the robust ResNeSt backbone and attention gates.
We show that our proposed method achieves state-of-the-art accuracy compared to existing methods.
arXiv Detail & Related papers (2021-05-02T06:36:36Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.