Multi-scale Information Sharing and Selection Network with Boundary Attention for Polyp Segmentation
- URL: http://arxiv.org/abs/2405.11151v1
- Date: Sat, 18 May 2024 02:48:39 GMT
- Title: Multi-scale Information Sharing and Selection Network with Boundary Attention for Polyp Segmentation
- Authors: Xiaolu Kang, Zhuoqi Ma, Kang Liu, Yunan Li, Qiguang Miao,
- Abstract summary: We propose a Multi-scale information sharing and selection network (MISNet) for polyp segmentation task.
Experiments on five polyp segmentation datasets demonstrate that MISNet successfully improved the accuracy and clarity of segmentation result.
- Score: 10.152504573356413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polyp segmentation for colonoscopy images is of vital importance in clinical practice. It can provide valuable information for colorectal cancer diagnosis and surgery. While existing methods have achieved relatively good performance, polyp segmentation still faces the following challenges: (1) Varying lighting conditions in colonoscopy and differences in polyp locations, sizes, and morphologies. (2) The indistinct boundary between polyps and surrounding tissue. To address these challenges, we propose a Multi-scale information sharing and selection network (MISNet) for polyp segmentation task. We design a Selectively Shared Fusion Module (SSFM) to enforce information sharing and active selection between low-level and high-level features, thereby enhancing model's ability to capture comprehensive information. We then design a Parallel Attention Module (PAM) to enhance model's attention to boundaries, and a Balancing Weight Module (BWM) to facilitate the continuous refinement of boundary segmentation in the bottom-up process. Experiments on five polyp segmentation datasets demonstrate that MISNet successfully improved the accuracy and clarity of segmentation result, outperforming state-of-the-art methods.
Related papers
- ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - SAM-EG: Segment Anything Model with Egde Guidance framework for efficient Polyp Segmentation [6.709243857842895]
We propose a framework that guides small segmentation models for polyp segmentation to address the cost challenge.
In this study, we introduce the Edge Guiding module, which integrates edge information into image features.
Our small models showcase their efficacy by achieving competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2024-06-21T01:42:20Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Segment Anything Model-guided Collaborative Learning Network for
Scribble-supervised Polyp Segmentation [45.15517909664628]
Polyp segmentation plays a vital role in accurately locating polyps at an early stage.
pixel-wise annotation for polyp images by physicians during the diagnosis is both time-consuming and expensive.
We propose a novel SAM-guided Collaborative Learning Network (SAM-CLNet) for scribble-supervised polyp segmentation.
arXiv Detail & Related papers (2023-12-01T03:07:13Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [40.3881565207086]
In this study, we present a novel Edge-aware Feature Aggregation Network (EFA-Net) for polyp segmentation.
EFA-Net can fully make use of cross-level and multi-scale features to enhance the performance of polyp segmentation.
Experimental results on five widely adopted colonoscopy datasets show that our EFA-Net outperforms state-of-the-art polyp segmentation methods in terms of generalization and effectiveness.
arXiv Detail & Related papers (2023-09-19T11:09:38Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - BDG-Net: Boundary Distribution Guided Network for Accurate Polyp
Segmentation [9.175022232984709]
Polypectomy can effectively interrupt the progression of adenoma to adenocarcinoma.
Due to the different sizes of polyps and the unclear boundary between polyps and their surrounding mucosa, it is challenging to segment polyps accurately.
We design a Boundary Distribution Guided Network (BDG-Net) for accurate polyp segmentation.
arXiv Detail & Related papers (2022-01-03T17:15:18Z) - Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers [124.01928050651466]
We propose a new type of polyp segmentation method, named Polyp-PVT.
The proposed model, named Polyp-PVT, effectively suppresses noises in the features and significantly improves their expressive capabilities.
arXiv Detail & Related papers (2021-08-16T07:09:06Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.