A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic
Forecasting
- URL: http://arxiv.org/abs/2006.11583v1
- Date: Sat, 20 Jun 2020 14:12:01 GMT
- Title: A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic
Forecasting
- Authors: Jiawei Zhu, Yujiao Song, Ling Zhao and Haifeng Li
- Abstract summary: An attention temporal graph convolutional network (A3T-GCN) traffic forecasting method was proposed to capture global temporal dynamics and spatial correlations.
The A3T-GCN model learns the short-time trend in time series by using the gated recurrent units and learns the spatial dependence based on the topology of the road network.
Experimental results in real-world datasets demonstrate the effectiveness and robustness of proposed A3T-GCN.
- Score: 4.147625439377302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate real-time traffic forecasting is a core technological problem
against the implementation of the intelligent transportation system. However,
it remains challenging considering the complex spatial and temporal
dependencies among traffic flows. In the spatial dimension, due to the
connectivity of the road network, the traffic flows between linked roads are
closely related. In terms of the temporal factor, although there exists a
tendency among adjacent time points in general, the importance of distant past
points is not necessarily smaller than that of recent past points since traffic
flows are also affected by external factors. In this study, an attention
temporal graph convolutional network (A3T-GCN) traffic forecasting method was
proposed to simultaneously capture global temporal dynamics and spatial
correlations. The A3T-GCN model learns the short-time trend in time series by
using the gated recurrent units and learns the spatial dependence based on the
topology of the road network through the graph convolutional network. Moreover,
the attention mechanism was introduced to adjust the importance of different
time points and assemble global temporal information to improve prediction
accuracy. Experimental results in real-world datasets demonstrate the
effectiveness and robustness of proposed A3T-GCN. The source code can be
visited at https://github.com/lehaifeng/T-GCN/A3T.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting [27.20703077756038]
We propose Temporal Graph Learning Recurrent Neural Network (TGLRN) to address these problems.
More precisely, to effectively model the nature of time series, we leverage Recurrent Neural Networks (RNNs) to dynamically construct a graph at each time step.
Experimental results on four commonly used real-world benchmark datasets show the effectiveness of TGLRN.
arXiv Detail & Related papers (2024-06-04T19:08:40Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
We argue that such correlations are universal and play a pivotal role in traffic flow.
We propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor.
The proposed STNN model can be applied on any unseen traffic networks.
arXiv Detail & Related papers (2021-09-11T09:04:35Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network
for Traffic Flow Forecasting [41.87633457352356]
This paper proposes a neural network model that focuses on the globality and locality of traffic networks.
Experiments on two real-world datasets show that the model can scrutinize the spatial-temporal correlation of traffic data.
arXiv Detail & Related papers (2020-11-30T09:21:43Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.