Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting
- URL: http://arxiv.org/abs/2406.02726v1
- Date: Tue, 4 Jun 2024 19:08:40 GMT
- Title: Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting
- Authors: Sanghyun Lee, Chanyoung Park,
- Abstract summary: We propose Temporal Graph Learning Recurrent Neural Network (TGLRN) to address these problems.
More precisely, to effectively model the nature of time series, we leverage Recurrent Neural Networks (RNNs) to dynamically construct a graph at each time step.
Experimental results on four commonly used real-world benchmark datasets show the effectiveness of TGLRN.
- Score: 27.20703077756038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate traffic flow forecasting is a crucial research topic in transportation management. However, it is a challenging problem due to rapidly changing traffic conditions, high nonlinearity of traffic flow, and complex spatial and temporal correlations of road networks. Most existing studies either try to capture the spatial dependencies between roads using the same semantic graph over different time steps, or assume all sensors on the roads are equally likely to be connected regardless of the distance between them. However, we observe that the spatial dependencies between roads indeed change over time, and two distant roads are not likely to be helpful to each other when predicting the traffic flow, both of which limit the performance of existing studies. In this paper, we propose Temporal Graph Learning Recurrent Neural Network (TGLRN) to address these problems. More precisely, to effectively model the nature of time series, we leverage Recurrent Neural Networks (RNNs) to dynamically construct a graph at each time step, thereby capturing the time-evolving spatial dependencies between roads (i.e., microscopic view). Simultaneously, we provide the Adaptive Structure Information to the model, ensuring that close and consecutive sensors are considered to be more important for predicting the traffic flow (i.e., macroscopic view). Furthermore, to endow TGLRN with robustness, we introduce an edge sampling strategy when constructing the graph at each time step, which eventually leads to further improvements on the model performance. Experimental results on four commonly used real-world benchmark datasets show the effectiveness of TGLRN.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
We propose STLGRU, a novel traffic forecasting model for predicting traffic flow accurately.
Our proposed STLGRU can effectively capture dynamic local and global spatial-temporal relations of traffic networks.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2022-12-08T20:24:59Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
We argue that such correlations are universal and play a pivotal role in traffic flow.
We propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor.
The proposed STNN model can be applied on any unseen traffic networks.
arXiv Detail & Related papers (2021-09-11T09:04:35Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic
Forecasting [4.147625439377302]
An attention temporal graph convolutional network (A3T-GCN) traffic forecasting method was proposed to capture global temporal dynamics and spatial correlations.
The A3T-GCN model learns the short-time trend in time series by using the gated recurrent units and learns the spatial dependence based on the topology of the road network.
Experimental results in real-world datasets demonstrate the effectiveness and robustness of proposed A3T-GCN.
arXiv Detail & Related papers (2020-06-20T14:12:01Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.