論文の概要: AraDIC: Arabic Document Classification using Image-Based Character
Embeddings and Class-Balanced Loss
- arxiv url: http://arxiv.org/abs/2006.11586v1
- Date: Sat, 20 Jun 2020 14:25:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 22:46:44.285752
- Title: AraDIC: Arabic Document Classification using Image-Based Character
Embeddings and Class-Balanced Loss
- Title(参考訳): AraDIC:画像ベースの文字埋め込みとクラスベース損失を用いたアラビア文書分類
- Authors: Mahmoud Daif, Shunsuke Kitada, Hitoshi Iyatomi
- Abstract要約: 本稿では,アラビア文書イメージベース分類器 (AraDIC) を新たに提案する。
AraDICは画像ベースの文字エンコーダと分類器から構成される。長期データ分散問題に対処するために、クラスバランス損失を用いてエンドツーエンドで訓練される。
我々の知る限りでは、アラビア文字分類の問題に対処する最初の画像ベースの文字埋め込みフレームワークである。
- 参考スコア(独自算出の注目度): 7.734726150561088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical and some deep learning techniques for Arabic text classification
often depend on complex morphological analysis, word segmentation, and
hand-crafted feature engineering. These could be eliminated by using
character-level features. We propose a novel end-to-end Arabic document
classification framework, Arabic document image-based classifier (AraDIC),
inspired by the work on image-based character embeddings. AraDIC consists of an
image-based character encoder and a classifier. They are trained in an
end-to-end fashion using the class balanced loss to deal with the long-tailed
data distribution problem. To evaluate the effectiveness of AraDIC, we created
and published two datasets, the Arabic Wikipedia title (AWT) dataset and the
Arabic poetry (AraP) dataset. To the best of our knowledge, this is the first
image-based character embedding framework addressing the problem of Arabic text
classification. We also present the first deep learning-based text classifier
widely evaluated on modern standard Arabic, colloquial Arabic and classical
Arabic. AraDIC shows performance improvement over classical and deep learning
baselines by 12.29% and 23.05% for the micro and macro F-score, respectively.
- Abstract(参考訳): アラビア文字分類のための古典的およびいくつかの深層学習技術は、しばしば複雑な形態解析、単語分割、手作りの特徴工学に依存している。
これらは文字レベルの機能を使用することで排除できる。
本稿では、画像に基づく文字埋め込みの研究に触発された、アラビア語の文書分類フレームワークであるアラビア文字分類器(AraDIC)を提案する。
AraDICは画像ベースの文字エンコーダと分類器で構成される。
長期的なデータ分散問題に対処するために、クラスバランスの取れた損失を使用してエンドツーエンドでトレーニングされる。
AraDICの有効性を評価するために、アラビア語ウィキペディアのタイトル(AWT)データセットとアラビア詩(AraP)データセットの2つのデータセットを作成し、公開しました。
私たちの知る限りでは、これはアラビア語のテキスト分類の問題に対処する最初の画像ベースの文字埋め込みフレームワークです。
また,現代標準アラビア語,口語アラビア語,古典アラビア語において広く評価された最初の深層学習に基づくテキスト分類器を提案する。
AraDICは、マイクロFスコアとマクロFスコアでそれぞれ12.29%と23.05%の性能改善を示している。
関連論文リスト
- ATHAR: A High-Quality and Diverse Dataset for Classical Arabic to English Translation [1.8109081066789847]
古典アラビア語は重要な時代であり、アラブ文化、哲学、科学文学の黄金時代を包含している。
我々は古典アラビア語の翻訳データセットが不足していることを特定し、スコープやトピックに制限されることが多い。
ATHARデータセットは66,000の高品質のアラビア語から英語への翻訳サンプルからなる。
論文 参考訳(メタデータ) (2024-07-29T09:45:34Z) - A multi-level multi-label text classification dataset of 19th century Ottoman and Russian literary and critical texts [8.405938712823563]
本稿では,3000以上の文書からなる多レベル多言語テキスト分類データセットを提案する。
このデータセットは19世紀のトルコ語とロシア語の文学的および批判的なテキストを特徴としている。
このデータセットに大規模言語モデル(LLM)を適用した最初の研究である。
論文 参考訳(メタデータ) (2024-07-21T12:14:45Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
本稿では,アラビア語のテキストによる事前学習,ネイティブなアラビア語命令を利用したSFT(Supervised Fine-Tuning),アラビア語のGPT-4応答を含む総合的なソリューションを提案する。
目標は、文化的に認知され、価値に整合したアラビア語のLLMを、多様で応用特有のアラビア語コミュニティのニーズに適応させることである。
論文 参考訳(メタデータ) (2023-09-21T13:20:13Z) - Beyond Arabic: Software for Perso-Arabic Script Manipulation [67.31374614549237]
ペルソ・アラビア文字を使用する言語の書き起こしシステムを操作するための有限状態トランスデューサ(FST)コンポーネントとそれに対応するユーティリティのセットを提供する。
ライブラリはまた、単純なFSTベースのロマン化と文字変換も提供する。
論文 参考訳(メタデータ) (2023-01-26T20:37:03Z) - Huruf: An Application for Arabic Handwritten Character Recognition Using
Deep Learning [0.0]
本稿では、アラビア語の文字と数字を認識するための軽量な畳み込みニューラルネットワークアーキテクチャを提案する。
提案したパイプラインは、畳み込み、プール、バッチ正規化、ドロップアウト、最後にグローバル平均レイヤの4つのレイヤを含む合計18層で構成されている。
提案したモデルはそれぞれ96.93%と99.35%の精度を達成し、これは最先端のエンドレベルアプリケーションに適した解決策となった。
論文 参考訳(メタデータ) (2022-12-16T17:39:32Z) - Graphemic Normalization of the Perso-Arabic Script [47.429213930688086]
本稿では,ペルソ・アラビア語が最良文書言語を超えて提示する課題について述べる。
自然言語処理(NLP)の状況に注目する。
ペルソ・アラビア文字ディアスポラの多言語語族8言語に対する正規化が機械翻訳および統計言語モデリングタスクに及ぼす影響を評価する。
論文 参考訳(メタデータ) (2022-10-21T21:59:44Z) - Comprehensive Benchmark Datasets for Amharic Scene Text Detection and
Recognition [56.048783994698425]
Ethiopic/Amharicスクリプトはアフリカ最古の書記システムの一つで、東アフリカで少なくとも23の言語に対応している。
アムハラ語の表記体系である Abugida は282音節、15句の句読点、20の数字を持つ。
HUST-ART, HUST-AST, ABE, Tana という,自然界におけるアムハラ文字の検出と認識のための総合的な公開データセットを提示した。
論文 参考訳(メタデータ) (2022-03-23T03:19:35Z) - New Arabic Medical Dataset for Diseases Classification [55.41644538483948]
いくつかのアラブの医療ウェブサイトから収集された2000の医療資料を含む、アラブの医療データセットを新たに導入する。
データセットはテキストの分類作業のために構築され、10つのクラス(Blood, Bone, Cardiovascular, Ear, Endocrine, Eye, Gastrointestinal, Immune, Liver, Nephrological)を含んでいる。
データセットの実験は、GoogleのBERT、大きなアラビアのコーパスを持つBERTに基づくアラビアト、アラビアの医療コーパスをベースとしたAraBioNERの3つの事前トレーニングモデルによって行われた。
論文 参考訳(メタデータ) (2021-06-29T10:42:53Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - TArC: Incrementally and Semi-Automatically Collecting a Tunisian Arabish
Corpus [3.8580784887142774]
本稿では,第1次チュニジア・アラブ人コーパス(TArC)の構成過程について述べる。
アラビア語(アラビア語: Arabizi)は、アラビア語の方言をラテン文字とアリスモグラフ(文字として使われる数字)で自発的に符号化したものである。
論文 参考訳(メタデータ) (2020-03-20T22:29:42Z) - Deep Learning for Hindi Text Classification: A Comparison [6.8629257716723]
デヴァナガリ文字で書かれた形態的に豊かで低資源のヒンディー語を分類する研究は、大きなラベル付きコーパスがないために限られている。
本研究では,CNN,LSTM,注意に基づくモデル評価のために,英文データセットの翻訳版を用いた。
また,本論文は,一般的なテキスト分類手法のチュートリアルとしても機能する。
論文 参考訳(メタデータ) (2020-01-19T09:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。