Regression Prior Networks
- URL: http://arxiv.org/abs/2006.11590v2
- Date: Wed, 9 Dec 2020 09:34:21 GMT
- Title: Regression Prior Networks
- Authors: Andrey Malinin, Sergey Chervontsev, Ivan Provilkov and Mark Gales
- Abstract summary: Prior Networks are a newly developed class of models which yield interpretable measures of uncertainty.
They can also be used to distill an ensemble of models via Ensemble Distribution Distillation (EnD$2$)
This work extends Prior Networks and EnD$2$ to regression tasks by considering the Normal-Wishart distribution.
- Score: 14.198991969107524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior Networks are a recently developed class of models which yield
interpretable measures of uncertainty and have been shown to outperform
state-of-the-art ensemble approaches on a range of tasks. They can also be used
to distill an ensemble of models via Ensemble Distribution Distillation
(EnD$^2$), such that its accuracy, calibration and uncertainty estimates are
retained within a single model. However, Prior Networks have so far been
developed only for classification tasks. This work extends Prior Networks and
EnD$^2$ to regression tasks by considering the Normal-Wishart distribution. The
properties of Regression Prior Networks are demonstrated on synthetic data,
selected UCI datasets and a monocular depth estimation task, where they yield
performance competitive with ensemble approaches.
Related papers
- Building a Winning Team: Selecting Source Model Ensembles using a
Submodular Transferability Estimation Approach [20.86345962679122]
Estimating the transferability of publicly available pretrained models to a target task has assumed an important place for transfer learning tasks.
We propose a novel Optimal tranSport-based suBmOdular tRaNsferability metric (OSBORN) to estimate the transferability of an ensemble of models to a downstream task.
arXiv Detail & Related papers (2023-09-05T17:57:31Z) - Cross-Inferential Networks for Source-free Unsupervised Domain
Adaptation [17.718392065388503]
We propose to explore a new method called cross-inferential networks (CIN)
Our main idea is that, when we adapt the network model to predict the sample labels from encoded features, we use these prediction results to construct new training samples with derived labels.
Our experimental results on benchmark datasets demonstrate that our proposed CIN approach can significantly improve the performance of source-free UDA.
arXiv Detail & Related papers (2023-06-29T14:04:24Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - SynBench: Task-Agnostic Benchmarking of Pretrained Representations using
Synthetic Data [78.21197488065177]
Recent success in fine-tuning large models, that are pretrained on broad data at scale, on downstream tasks has led to a significant paradigm shift in deep learning.
This paper proposes a new task-agnostic framework, textitSynBench, to measure the quality of pretrained representations using synthetic data.
arXiv Detail & Related papers (2022-10-06T15:25:00Z) - Stochastic Deep Networks with Linear Competing Units for Model-Agnostic
Meta-Learning [4.97235247328373]
This work addresses meta-learning (ML) by considering deep networks with local winner-takes-all (LWTA) activations.
This type of network units results in sparse representations from each model layer, as the units are organized into blocks where only one unit generates a non-zero output.
Our approach produces state-of-the-art predictive accuracy on few-shot image classification and regression experiments, as well as reduced predictive error on an active learning setting.
arXiv Detail & Related papers (2022-08-02T16:19:54Z) - Compound Density Networks for Risk Prediction using Electronic Health
Records [1.1786249372283562]
We propose an integrated end-to-end approach by utilizing a Compound Density Network (CDNet)
CDNet allows the imputation method and prediction model to be tuned together within a single framework.
We validate CDNet on the mortality prediction task on the MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-02T09:04:20Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - End-to-End Weak Supervision [15.125993628007972]
We propose an end-to-end approach for directly learning the downstream model.
We show improved performance over prior work in terms of end model performance on downstream test sets.
arXiv Detail & Related papers (2021-07-05T19:10:11Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.