論文の概要: On Aggregation in Ensembles of Multilabel Classifiers
- arxiv url: http://arxiv.org/abs/2006.11916v1
- Date: Sun, 21 Jun 2020 21:43:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 11:37:52.780423
- Title: On Aggregation in Ensembles of Multilabel Classifiers
- Title(参考訳): 複数ラベル分類器の集合における集合について
- Authors: Vu-Linh Nguyen and Eyke H\"ullermeier and Michael Rapp and Eneldo Loza
Menc\'ia and Johannes F\"urnkranz
- Abstract要約: 予測と組み合わせ (PTC) と合成と予測 (CTP) は, マルチラベル分類をアンサンブルする2つの主要なアプローチである。
PTCは非分解不能な損失に対してより良い選択であることを示す。
- 参考スコア(独自算出の注目度): 4.842945656927122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While a variety of ensemble methods for multilabel classification have been
proposed in the literature, the question of how to aggregate the predictions of
the individual members of the ensemble has received little attention so far. In
this paper, we introduce a formal framework of ensemble multilabel
classification, in which we distinguish two principal approaches: "predict then
combine" (PTC), where the ensemble members first make loss minimizing
predictions which are subsequently combined, and "combine then predict" (CTP),
which first aggregates information such as marginal label probabilities from
the individual ensemble members, and then derives a prediction from this
aggregation. While both approaches generalize voting techniques commonly used
for multilabel ensembles, they allow to explicitly take the target performance
measure into account. Therefore, concrete instantiations of CTP and PTC can be
tailored to concrete loss functions. Experimentally, we show that standard
voting techniques are indeed outperformed by suitable instantiations of CTP and
PTC, and provide some evidence that CTP performs well for decomposable loss
functions, whereas PTC is the better choice for non-decomposable losses.
- Abstract(参考訳): マルチラベル分類のための様々なアンサンブル手法が文献に提案されているが、アンサンブルの個々のメンバーの予測をどのように集約するかという問題は、今のところほとんど注目されていない。
本稿では,アンサンブルのマルチラベル分類の形式的枠組みについて紹介する。この手法では,アンサンブルのメンバが次に合成した予測を最小化する"predict then combine" (ptc) と,各アンサンブルのメンバからマージンラベルの確率などの情報を最初に集約する"combine then predict" (ctp) の2つの主要なアプローチを区別し,その結果から予測を導出する。
どちらのアプローチも、マルチラベルアンサンブルによく使用される投票手法を一般化しているが、ターゲットのパフォーマンス指標を明示的に考慮することができる。
したがって、ctpとptcの具体化を具体的損失関数に合わせることができる。
実験により,標準投票手法はCTPとPTCの適切なインスタンス化によって実際に優れており,CTPが分解不能な損失関数に対して良好であることを示す。
関連論文リスト
- Improved Diversity-Promoting Collaborative Metric Learning for Recommendation [127.08043409083687]
CML(Collaborative Metric Learning)は、リコメンデーションシステムにおいて人気のある手法として最近登場した。
本稿では,ユーザが複数のカテゴリの関心を持つ,困難なシナリオに焦点をあてる。
textitDiversity-Promoting Collaborative Metric Learning (DPCML) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T07:44:48Z) - Adapting Conformal Prediction to Distribution Shifts Without Labels [16.478151550456804]
コンフォーマル予測(CP)により、機械学習モデルは、保証されたカバレッジ率で予測セットを出力できる。
我々の目標は、テストドメインからのラベルなしデータのみを使用して、CP生成予測セットの品質を改善することです。
これは、未ラベルテストデータに対するベースモデルの不確実性に応じてCPのスコア関数を調整する、ECP と EACP と呼ばれる2つの新しい手法によって達成される。
論文 参考訳(メタデータ) (2024-06-03T15:16:02Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
分散評価(disaggregated evaluation)は、AIフェアネスアセスメントにおける中心的なタスクであり、AIシステムのさまざまなサブグループ間でのパフォーマンスを測定することを目的としている。
非常に小さなサブグループであっても,信頼性の高いシステム性能推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-01-26T14:21:45Z) - Well-calibrated Confidence Measures for Multi-label Text Classification
with a Large Number of Labels [1.1833906227033337]
本稿では,ラベルパワーセット (LP) ICP の計算非効率性に対処する新しい手法を提案する。
LP-ICPを3種類の深層ニューラルネットワーク (ANN) 分類器に適用し, 文脈型 (bert) と非文脈型 (word2vec) ワード埋め込み型 (word2vec) の2種類について検討した。
提案手法は, p-値が指定された値以下のラベルセットのかなりの数を考慮することにより, LPの計算負担の増大に対処する。
論文 参考訳(メタデータ) (2023-12-14T19:17:42Z) - A Universal Unbiased Method for Classification from Aggregate
Observations [115.20235020903992]
本稿では,任意の損失に対する分類リスクを非バイアスで推定するCFAOの普遍的手法を提案する。
提案手法は,非バイアスリスク推定器によるリスクの整合性を保証するだけでなく,任意の損失に対応できる。
論文 参考訳(メタデータ) (2023-06-20T07:22:01Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - On-the-Fly Ensemble Pruning in Evolving Data Streams [4.137914981603379]
CCRPはマルチクラスデータストリーム分類のためのオンザフライ・アンサンブル・プルーニング方式である。
CCRPを統合した異なるタイプのen-semblesは、平均メモリ消費量を20%から90%削減して、同等または優れた性能で一貫して収まることを示す。
論文 参考訳(メタデータ) (2021-09-15T22:54:22Z) - Learning Stochastic Majority Votes by Minimizing a PAC-Bayes
Generalization Bound [15.557653926558638]
分類器の有限アンサンブルに対する多数票の対について検討し、その一般化特性について検討する。
ディリクレ分布でインスタンス化し、予測されるリスクに対して閉じた形式と微分可能な表現を可能にする。
結果の多数決学習アルゴリズムは、最先端の精度と(非空きな)厳密な境界から恩恵を得る。
論文 参考訳(メタデータ) (2021-06-23T16:57:23Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。