論文の概要: Learning Stochastic Majority Votes by Minimizing a PAC-Bayes
Generalization Bound
- arxiv url: http://arxiv.org/abs/2106.12535v1
- Date: Wed, 23 Jun 2021 16:57:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 16:45:21.655800
- Title: Learning Stochastic Majority Votes by Minimizing a PAC-Bayes
Generalization Bound
- Title(参考訳): PAC-Bayes一般化境界の最小化による確率的多数票の学習
- Authors: Valentina Zantedeschi, Paul Viallard, Emilie Morvant, R\'emi Emonet,
Amaury Habrard, Pascal Germain, Benjamin Guedj
- Abstract要約: 分類器の有限アンサンブルに対する多数票の対について検討し、その一般化特性について検討する。
ディリクレ分布でインスタンス化し、予測されるリスクに対して閉じた形式と微分可能な表現を可能にする。
結果の多数決学習アルゴリズムは、最先端の精度と(非空きな)厳密な境界から恩恵を得る。
- 参考スコア(独自算出の注目度): 15.557653926558638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate a stochastic counterpart of majority votes over finite
ensembles of classifiers, and study its generalization properties. While our
approach holds for arbitrary distributions, we instantiate it with Dirichlet
distributions: this allows for a closed-form and differentiable expression for
the expected risk, which then turns the generalization bound into a tractable
training objective. The resulting stochastic majority vote learning algorithm
achieves state-of-the-art accuracy and benefits from (non-vacuous) tight
generalization bounds, in a series of numerical experiments when compared to
competing algorithms which also minimize PAC-Bayes objectives -- both with
uninformed (data-independent) and informed (data-dependent) priors.
- Abstract(参考訳): 分類器の有限アンサンブルに対する多数票の確率的対向について検討し,その一般化特性について検討する。
このアプローチは任意の分布に対して成り立つが、dirichlet分布をインスタンス化する: これは、期待されるリスクに対して閉じた形式と微分可能な表現を可能にする。
その結果得られた確率的多数決学習アルゴリズムは、pap-bayes目標を最小化する競合するアルゴリズムと比較した一連の数値実験において、最先端の精度と(空でない)密接な一般化限界の利点を達成する。
関連論文リスト
- On Policy Evaluation Algorithms in Distributional Reinforcement Learning [0.0]
分散強化学習(DRL)による政策評価問題における未知の回帰分布を効率的に近似する新しいアルゴリズムのクラスを導入する。
提案したアルゴリズムの単純な例では、ワッサーシュタインとコルモゴロフ-スミルノフ距離の両方において誤差境界を証明する。
確率密度関数を持つ戻り分布の場合、アルゴリズムはこれらの密度を近似し、誤差境界は上限ノルム内で与えられる。
論文 参考訳(メタデータ) (2024-07-19T10:06:01Z) - Tighter Generalisation Bounds via Interpolation [16.74864438507713]
本稿では、$(f, Gamma)$-divergenceに基づいて、新しいPAC-Bayes一般化境界を導出するレシピを提案する。
また、PAC-Bayes一般化バウンダリでは、一連の確率発散を補間する。
論文 参考訳(メタデータ) (2024-02-07T18:55:22Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
論文 参考訳(メタデータ) (2023-11-10T15:33:19Z) - Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning [83.41487567765871]
Skipperはモデルベースの強化学習フレームワークである。
これは、与えられたタスクをより小さく、より管理しやすいサブタスクに自動的に一般化する。
環境の関連部分には、スパースな意思決定と集中した抽象化を可能にする。
論文 参考訳(メタデータ) (2023-09-30T02:25:18Z) - Correcting Underrepresentation and Intersectional Bias for Classification [49.1574468325115]
我々は、表現不足のバイアスによって破損したデータから学習する問題を考察する。
偏りのないデータの少ない場合、グループワイドのドロップアウト率を効率的に推定できることが示される。
本アルゴリズムは,有限VC次元のモデルクラスに対して,効率的な学習を可能にする。
論文 参考訳(メタデータ) (2023-06-19T18:25:44Z) - Diverse Projection Ensembles for Distributional Reinforcement Learning [6.754994171490016]
この研究は、分布的アンサンブルにおけるいくつかの異なる射影と表現の組み合わせを研究する。
我々は、平均1ドル=ワッサーシュタイン距離で測定されるアンサンブル不一致を、深層探査のボーナスとして利用するアルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-06-12T13:59:48Z) - Policy learning "without'' overlap: Pessimism and generalized empirical
Bernstein's inequality [107.84979976896912]
オフライン政策学習は、収集された優先順位を利用して、最適な個別化決定ルールを学ぶことを目的としている。
既存のポリシー学習手法は、一様重なりの仮定、すなわち、すべての個々の特性に対する全てのアクションを探索する確率は、オフラインデータセットにおいて低い境界となる。
本稿では,政策値の点推定ではなく,低信頼境界(LCB)を最適化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-19T22:43:08Z) - An Online Learning Approach to Interpolation and Extrapolation in Domain
Generalization [53.592597682854944]
リスクを最小化するプレイヤーと新しいテストを示す敵の間のオンラインゲームとしてサブグループの一般化を再放送する。
両課題に対してERMは極小最適であることを示す。
論文 参考訳(メタデータ) (2021-02-25T19:06:48Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - A General Method for Robust Learning from Batches [56.59844655107251]
本稿では,バッチから頑健な学習を行う一般的なフレームワークについて考察し,連続ドメインを含む任意の領域に対する分類と分布推定の限界について考察する。
本手法は,一括分節分類,一括分節,単調,対数凹,ガウス混合分布推定のための,最初の頑健な計算効率の学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-25T18:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。