Fully Automated 3D Segmentation of MR-Imaged Calf Muscle Compartments:
Neighborhood Relationship Enhanced Fully Convolutional Network
- URL: http://arxiv.org/abs/2006.11930v2
- Date: Mon, 21 Dec 2020 22:15:25 GMT
- Title: Fully Automated 3D Segmentation of MR-Imaged Calf Muscle Compartments:
Neighborhood Relationship Enhanced Fully Convolutional Network
- Authors: Zhihui Guo, Honghai Zhang, Zhi Chen, Ellen van der Plas, Laurie
Gutmann, Daniel Thedens, Peggy Nopoulos, Milan Sonka
- Abstract summary: FilterNet is a novel fully convolutional network (FCN) that embeds edge-aware constraints for individual calf muscle compartment segmentations.
FCN was evaluated on 40 T1-weighted MR images of 10 healthy and 30 diseased subjects by 4-fold cross-validation.
- Score: 6.597152960878372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated segmentation of individual calf muscle compartments from 3D
magnetic resonance (MR) images is essential for developing quantitative
biomarkers for muscular disease progression and its prediction. Achieving
clinically acceptable results is a challenging task due to large variations in
muscle shape and MR appearance. Although deep convolutional neural networks
(DCNNs) achieved improved accuracy in various image segmentation tasks, certain
problems such as utilizing long-range information and incorporating high-level
constraints remain unsolved. We present a novel fully convolutional network
(FCN), called FilterNet, that utilizes contextual information in a large
neighborhood and embeds edge-aware constraints for individual calf muscle
compartment segmentations. An encoder-decoder architecture with flexible
backbone blocks is used to systematically enlarge convolution receptive field
and preserve information at all resolutions. Edge positions derived from the
FCN output muscle probability maps are explicitly regularized using
kernel-based edge detection in an end-to-end optimization framework. Our
FilterNet was evaluated on 40 T1-weighted MR images of 10 healthy and 30
diseased subjects by 4-fold cross-validation. Mean DICE coefficients of
88.00%--91.29% and mean absolute surface positioning errors of 1.04--1.66 mm
were achieved for the five 3D muscle compartments.
Related papers
- Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques [0.0]
This study provides a comparative analysis of various segmentation models, including Probabilistic ATLAS, U-Net, nnU-Net, and LinkNet.
Our results demonstrate that the 3D nnU-Net model outperforms others, achieving the highest mean Dice Coefficient score (0.937 + 0.012)
The findings highlight the superiority of nnU-Net models in brain tissue segmentation, particularly when combined with N4 Bias Field Correction and Anisotropic Diffusion pre-processing techniques.
arXiv Detail & Related papers (2024-11-08T10:07:03Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Large-Kernel Attention for 3D Medical Image Segmentation [14.76728117630242]
In this paper, a novel large- kernel (LK) attention module is proposed to achieve accurate multi-organ segmentation and tumor segmentation.
The advantages of convolution and self-attention are combined in the proposed LK attention module, including local contextual information, long-range dependence, and channel adaptation.
The module also decomposes the LK convolution to optimize the computational cost and can be easily incorporated into FCNs such as U-Net.
arXiv Detail & Related papers (2022-07-19T16:32:55Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Automated Segmentation of Brain Gray Matter Nuclei on Quantitative
Susceptibility Mapping Using Deep Convolutional Neural Network [16.733578721523898]
Abnormal iron accumulation in the brain subcortical nuclei has been reported to be correlated to various neurodegenerative diseases.
We propose a double-branch residual-structured U-Net (DB-ResUNet) based on 3D convolutional neural network (CNN) to automatically segment such brain gray matter nuclei.
arXiv Detail & Related papers (2020-08-03T14:32:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.