An Online Algorithm for Computation Offloading in Non-Stationary
Environments
- URL: http://arxiv.org/abs/2006.12032v1
- Date: Mon, 22 Jun 2020 07:00:47 GMT
- Title: An Online Algorithm for Computation Offloading in Non-Stationary
Environments
- Authors: Aniq Ur Rahman, Gourab Ghatak, Antonio De Domenico
- Abstract summary: We consider the latency problem in a task-offloading scenario, where multiple servers are available to the user equipment for outsourcing computational tasks.
To account for the temporally dynamic nature of the wireless links and the availability of the computing resources, we model the server selection as a multi-armed bandit (MAB) problem.
We propose a novel online learning algorithm based on the principle of optimism in the face of uncertainty, which outperforms the state-of-the-art algorithms by up to 1s.
- Score: 12.843328612860244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the latency minimization problem in a task-offloading scenario,
where multiple servers are available to the user equipment for outsourcing
computational tasks. To account for the temporally dynamic nature of the
wireless links and the availability of the computing resources, we model the
server selection as a multi-armed bandit (MAB) problem. In the considered MAB
framework, rewards are characterized in terms of the end-to-end latency. We
propose a novel online learning algorithm based on the principle of optimism in
the face of uncertainty, which outperforms the state-of-the-art algorithms by
up to ~1s. Our results highlight the significance of heavily discounting the
past rewards in dynamic environments.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns.
We propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving pattern privacy (PP)
We develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions.
arXiv Detail & Related papers (2023-02-09T12:50:18Z) - Scheduling Inference Workloads on Distributed Edge Clusters with
Reinforcement Learning [11.007816552466952]
This paper focuses on the problem of scheduling inference queries on Deep Neural Networks in edge networks at short timescales.
By means of simulations, we analyze several policies in the realistic network settings and workloads of a large ISP.
We design ASET, a Reinforcement Learning based scheduling algorithm able to adapt its decisions according to the system conditions.
arXiv Detail & Related papers (2023-01-31T13:23:34Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - An Online Learning Approach to Optimizing Time-Varying Costs of AoI [26.661352924641285]
We consider systems that require timely monitoring of sources over a communication network.
For the single source monitoring problem, we design algorithms that achieve sublinear regret compared to the best fixed policy in hindsight.
For the multiple source scheduling problem, we design a new online learning algorithm called Follow-the-Perturbed-Whittle-Leader.
arXiv Detail & Related papers (2021-05-27T18:10:56Z) - Learning-based decentralized offloading decision making in an
adversarial environment [1.9978675755638664]
Vehicular fog computing (VFC) pushes the cloud computing capability to the distributed fog nodes at the edge of the Internet.
In this article, we develop a new adversarial online algorithm with bandit feedback based on the adversarial multi-armed bandit theory.
We theoretically prove that the input-size dependent selection rule allows to choose a suitable fog node without exploring the sub-optimal actions.
arXiv Detail & Related papers (2021-04-26T19:04:55Z) - Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network [24.022108191145527]
We investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services.
In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions.
Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint.
arXiv Detail & Related papers (2020-10-04T02:58:03Z) - Computation Offloading in Multi-Access Edge Computing Networks: A
Multi-Task Learning Approach [7.203439085947118]
Multi-access edge computing (MEC) has already shown the potential in enabling mobile devices to bear the computation-intensive applications by offloading some tasks to a nearby access point (AP) integrated with a MEC server (MES)
However, due to the varying network conditions and limited computation resources of the MES, the offloading decisions taken by a mobile device and the computational resources allocated by the MES may not be efficiently achieved with the lowest cost.
We propose a dynamic offloading framework for the MEC network, in which the uplink non-orthogonal multiple access (NOMA) is used to enable multiple devices to upload their
arXiv Detail & Related papers (2020-06-29T15:11:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.