論文の概要: Differentiable Rendering: A Survey
- arxiv url: http://arxiv.org/abs/2006.12057v2
- Date: Fri, 31 Jul 2020 00:01:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 06:39:56.778247
- Title: Differentiable Rendering: A Survey
- Title(参考訳): 差別化可能なレンダリング: 調査
- Authors: Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru
Matsuoka, Wadim Kehl, Adrien Gaidon
- Abstract要約: 微分レンダリングは、画像を通して3Dオブジェクトの勾配を計算し伝播させる新しい分野である。
本稿では、既存の文献をレビューし、差別化可能なレンダリングの現状と応用、オープンな研究課題について論じる。
- 参考スコア(独自算出の注目度): 22.35293459579154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have shown remarkable performance improvements on
vision-related tasks such as object detection or image segmentation. Despite
their success, they generally lack the understanding of 3D objects which form
the image, as it is not always possible to collect 3D information about the
scene or to easily annotate it. Differentiable rendering is a novel field which
allows the gradients of 3D objects to be calculated and propagated through
images. It also reduces the requirement of 3D data collection and annotation,
while enabling higher success rate in various applications. This paper reviews
existing literature and discusses the current state of differentiable
rendering, its applications and open research problems.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、オブジェクト検出やイメージセグメンテーションなどの視覚関連タスクにおいて、顕著なパフォーマンス向上を示している。
その成功にもかかわらず、通常は画像を形成する3dオブジェクトの理解が欠如しており、シーンに関する3d情報を収集したり、簡単に注釈を付けることは必ずしも不可能である。
微分可能レンダリングは、3dオブジェクトの勾配を画像を通して計算し伝播できる新しいフィールドである。
また、3Dデータ収集とアノテーションの要求を減らし、様々なアプリケーションで高い成功率を実現する。
本稿では,既存の文献を概観し,微分可能レンダリングの現状,応用,オープンリサーチの問題について考察する。
関連論文リスト
- Inverse Neural Rendering for Explainable Multi-Object Tracking [35.072142773300655]
我々はRGBカメラから3Dマルチオブジェクト追跡をEmphInverse Rendering (IR)問題として再放送した。
我々は、本質的に形状と外観特性を歪ませる生成潜在空間上の画像損失を最適化する。
本手法の一般化とスケーリング能力は,合成データのみから生成前を学習することで検証する。
論文 参考訳(メタデータ) (2024-04-18T17:37:53Z) - Probing the 3D Awareness of Visual Foundation Models [56.68380136809413]
視覚基礎モデルの3次元認識を解析する。
凍結した特徴に対するタスク固有プローブとゼロショット推論手法を用いて実験を行う。
論文 参考訳(メタデータ) (2024-04-12T17:58:04Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - OR-NeRF: Object Removing from 3D Scenes Guided by Multiview Segmentation
with Neural Radiance Fields [53.32527220134249]
ニューラル・レージアンス・フィールド(NeRF)の出現により,3次元シーン編集への関心が高まっている。
現在の手法では、時間を要するオブジェクトのラベル付け、特定のターゲットを削除する能力の制限、削除後のレンダリング品質の妥協といった課題に直面している。
本稿では, OR-NeRF と呼ばれる新しいオブジェクト除去パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-17T18:18:05Z) - Visual Localization using Imperfect 3D Models from the Internet [54.731309449883284]
本稿では,3次元モデルにおける欠陥が局所化精度に与える影響について検討する。
インターネットから得られる3Dモデルは、容易に表現できるシーン表現として有望であることを示す。
論文 参考訳(メタデータ) (2023-04-12T16:15:05Z) - Graph-DETR3D: Rethinking Overlapping Regions for Multi-View 3D Object
Detection [17.526914782562528]
グラフ構造学習(GSL)による多視点画像情報を自動的に集約するグラフDETR3Dを提案する。
我々の最良のモデルは、nuScenesテストリーダーボード上で49.5 NDSを達成し、様々な画像ビュー3Dオブジェクト検出器と比較して新しい最先端技術を実現している。
論文 参考訳(メタデータ) (2022-04-25T12:10:34Z) - Neural Articulated Radiance Field [90.91714894044253]
本稿では,画像から学習した明瞭な物体に対する新しい変形可能な3次元表現であるニューラルArticulated Radiance Field(NARF)を提案する。
実験の結果,提案手法は効率的であり,新しいポーズにうまく一般化できることがわかった。
論文 参考訳(メタデータ) (2021-04-07T13:23:14Z) - Disentangling 3D Prototypical Networks For Few-Shot Concept Learning [29.02523358573336]
本稿では,RGB-D画像をオブジェクトの形状やスタイルや背景シーンの地図に分解するニューラルネットワークアーキテクチャを提案する。
我々のネットワークには、画像形成過程、世界シーンの3次元幾何学、形状スタイルの相互作用を反映したアーキテクチャバイアスが組み込まれています。
論文 参考訳(メタデータ) (2020-11-06T14:08:27Z) - Image GANs meet Differentiable Rendering for Inverse Graphics and
Interpretable 3D Neural Rendering [101.56891506498755]
異なるレンダリングによって、ニューラルネットワークをトレーニングして"逆グラフィックス"タスクを実行する方法が舗装された。
提案手法は,既存のデータセットでトレーニングした最先端の逆グラフネットワークを著しく上回ることを示す。
論文 参考訳(メタデータ) (2020-10-18T22:29:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。