論文の概要: A Self-Attention Network based Node Embedding Model
- arxiv url: http://arxiv.org/abs/2006.12100v1
- Date: Mon, 22 Jun 2020 09:46:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 04:18:06.992844
- Title: A Self-Attention Network based Node Embedding Model
- Title(参考訳): 自己アテンションネットワークに基づくノード埋め込みモデル
- Authors: Dai Quoc Nguyen and Tu Dinh Nguyen and Dinh Phung
- Abstract要約: 新規な教師なし埋め込みモデルであるSANNEを提案する。
我々のSANNEは、現在のノードだけでなく、新しく見つからないノードにも、プラルーシブルな埋め込みを生成することを目的としています。
実験の結果,提案したSANNEはノード分類タスクの最先端結果が得られることがわかった。
- 参考スコア(独自算出の注目度): 17.10479440152652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite several signs of progress have been made recently, limited research
has been conducted for an inductive setting where embeddings are required for
newly unseen nodes -- a setting encountered commonly in practical applications
of deep learning for graph networks. This significantly affects the
performances of downstream tasks such as node classification, link prediction
or community extraction. To this end, we propose SANNE -- a novel unsupervised
embedding model -- whose central idea is to employ a transformer self-attention
network to iteratively aggregate vector representations of nodes in random
walks. Our SANNE aims to produce plausible embeddings not only for present
nodes, but also for newly unseen nodes. Experimental results show that the
proposed SANNE obtains state-of-the-art results for the node classification
task on well-known benchmark datasets.
- Abstract(参考訳): Despite several signs of progress have been made recently, limited research has been conducted for an inductive setting where embeddings are required for newly unseen nodes -- a setting encountered commonly in practical applications of deep learning for graph networks. This significantly affects the performances of downstream tasks such as node classification, link prediction or community extraction. To this end, we propose SANNE -- a novel unsupervised embedding model -- whose central idea is to employ a transformer self-attention network to iteratively aggregate vector representations of nodes in random walks.
我々のSANNEは、現在のノードだけでなく、新しく見つからないノードにも、プラルーシブルな埋め込みを生成することを目的としています。
実験の結果,よく知られたベンチマークデータセットのノード分類タスクにおいて,sanneは最先端の結果を得た。
関連論文リスト
- Global Context Enhanced Anomaly Detection of Cyber Attacks via Decoupled Graph Neural Networks [0.0]
非線形ネットワーク情報をキャプチャする問題を克服するために、分離したGNNをデプロイする。
ノード表現学習のために,ノード特徴情報を集約する2つのモジュールを持つGNNアーキテクチャを開発する。
その結果,非結合型トレーニングとグローバルコンテキストの強化されたノード表現は,AUCにおける最先端モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-04T21:54:07Z) - Reinforcement Learning for Node Selection in Branch-and-Bound [52.2648997215667]
現在の最先端セレクタは手作りのアンサンブルを使用して、ナイーブなサブノードセレクタと、個々のノードデータに依存する学習ノードセレクタを自動的に切り替える。
孤立ノードではなく木の状態全体を考慮しながら強化学習(RL)を用いる新しいシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2023-09-29T19:55:56Z) - Collaborative Graph Neural Networks for Attributed Network Embedding [63.39495932900291]
グラフニューラルネットワーク(GNN)は、属性付きネットワーク埋め込みにおいて顕著な性能を示している。
本稿では,ネットワーク埋め込みに適したGNNアーキテクチャであるCulaborative graph Neural Networks-CONNを提案する。
論文 参考訳(メタデータ) (2023-07-22T04:52:27Z) - Hierarchical Prototype Networks for Continual Graph Representation
Learning [90.78466005753505]
本稿では,連続的に拡張されたグラフを表現するために,プロトタイプの形式で抽象的な知識のレベルを抽出する階層型プロトタイプネットワーク(HPN)を提案する。
我々はHPNが最先端のベースライン技術を上回るだけでなく、メモリ消費も比較的少ないことを示した。
論文 参考訳(メタデータ) (2021-11-30T14:15:14Z) - Topic-aware latent models for representation learning on networks [5.304857921982132]
本稿では,トピックベース情報を用いたランダムウォークベースアプローチにより取得したノードの埋め込みを強化する汎用フレームワークであるTNEを紹介する。
提案手法はノード分類とリンク予測という2つのダウンストリームタスクで評価する。
論文 参考訳(メタデータ) (2021-11-10T08:52:52Z) - SSSNET: Semi-Supervised Signed Network Clustering [4.895808607591299]
SSSNETと呼ばれる半教師付きネットワーククラスタリングのためのGNNフレームワークにおいて、トレーニングノードに対する確率的バランスの取れた正規化カット損失を新たに導入する。
主な斬新なアプローチは、署名されたネットワーク埋め込みにおける社会的バランス理論の役割に関する新しい見解である。
論文 参考訳(メタデータ) (2021-10-13T10:36:37Z) - Ergodic Limits, Relaxations, and Geometric Properties of Random Walk
Node Embeddings [11.549910517683085]
ランダムウォークに基づくノード埋め込みアルゴリズムは,ネットワーク上のランダムウォークから計算したノード埋め込みベクトルとスキップバイグラム統計の客観的関数を最適化することにより,ノードのベクトル表現を学習する。
本稿では,ネットワーク内に隠されたブロック構造を発見するための教師なし設定において,ランダムウォークに基づくノード埋め込みの特性について検討する。
論文 参考訳(メタデータ) (2021-09-09T19:24:35Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - Integrating Network Embedding and Community Outlier Detection via
Multiclass Graph Description [15.679313861083239]
そこで本稿では,ノード埋め込みとアウトレーヤとコミュニティ検出を統合した非教師なしグラフ埋め込み手法(DMGD)を提案する。
DMGDにより検出された外れ値の数に関する理論的境界を示す。
我々の定式化は、外れ値、コミュニティ割り当て、ノード埋め込み関数の間の興味深いミニマックスゲームに起因する。
論文 参考訳(メタデータ) (2020-07-20T16:21:07Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
グラフメタ学習フレームワーク - Graph Prototypeal Networks (GPN) を提案する。
GPNは、属性付きネットワーク上でテキストミータ学習を行い、ターゲット分類タスクを扱うための高度に一般化可能なモデルを導出する。
論文 参考訳(メタデータ) (2020-06-23T04:13:23Z) - Benchmarking Network Embedding Models for Link Prediction: Are We Making
Progress? [84.43405961569256]
我々はリンク予測のためのネットワーク埋め込み手法の最先端について光を当てた。
私たちは、一貫した評価パイプラインを使用して、過去数年間でわずかに進歩しただけであることを示しています。
我々は、標準化された評価ツールがこの状況を修復し、この分野の将来的な進歩を促進することができると論じている。
論文 参考訳(メタデータ) (2020-02-25T16:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。