論文の概要: HookNet: multi-resolution convolutional neural networks for semantic
segmentation in histopathology whole-slide images
- arxiv url: http://arxiv.org/abs/2006.12230v1
- Date: Mon, 22 Jun 2020 13:26:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 05:56:37.893650
- Title: HookNet: multi-resolution convolutional neural networks for semantic
segmentation in histopathology whole-slide images
- Title(参考訳): hooknet:マルチレゾリューション畳み込みニューラルネットワークによる病理組織像における意味セグメンテーション
- Authors: Mart van Rijthoven, Maschenka Balkenhol, Karina Sili\c{n}a, Jeroen van
der Laak, Francesco Ciompi
- Abstract要約: HookNetは病理組織像全体に対するセグメンテーションモデルである。
HookNetを2つの病理組織像分割タスクに利用することの利点を示す。
- 参考スコア(独自算出の注目度): 5.77369471350776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose HookNet, a semantic segmentation model for histopathology
whole-slide images, which combines context and details via multiple branches of
encoder-decoder convolutional neural networks. Concentricpatches at multiple
resolutions with different fields of view are used to feed different branches
of HookNet, and intermediate representations are combined via a hooking
mechanism. We describe a framework to design and train HookNet for achieving
high-resolution semantic segmentation and introduce constraints to guarantee
pixel-wise alignment in feature maps during hooking. We show the advantages of
using HookNet in two histopathology image segmentation tasks where tissue type
prediction accuracy strongly depends on contextual information, namely (1)
multi-class tissue segmentation in breast cancer and, (2) segmentation of
tertiary lymphoid structures and germinal centers in lung cancer. Weshow the
superiority of HookNet when compared with single-resolution U-Net models
working at different resolutions as well as with a recently published
multi-resolution model for histopathology image segmentation
- Abstract(参考訳): 本稿では,エンコーダ・デコーダ畳み込みニューラルネットワークの複数の分岐による文脈と詳細を結合した,病理組織像のための意味セグメンテーションモデルhooknetを提案する。
異なる視野の異なる複数の解像度の同心パッチは、フックネットの異なる分岐を供給し、中間表現はフック機構を介して結合される。
本稿では,高分解能セマンティクスセグメンテーションを実現するためのhooknetの設計と訓練のためのフレームワークについて述べる。
組織型予測の精度は,(1)乳癌における多種組織分画,(2)肺癌における第3級リンパ組織構造と胚中心の分画という,文脈情報に強く依存する2つの病理組織像分画課題においてhooknetを使用する利点を示す。
異なる解像度で動作するシングルレゾリューションU-Netモデルと最近発表された病理像分割のためのマルチレゾリューションモデルとの比較によるHookNetの優位性の検討
関連論文リスト
- GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation [24.85210810502592]
本稿では病理組織像分割のためのMultiResU-Netの修正版を提案する。
複雑な機能を複数のスケールで分析し、セグメント化できるため、バックボーンとして選択される。
乳がんの病理組織像データセットの多様性について検討した。
論文 参考訳(メタデータ) (2024-06-12T19:17:17Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
低解像度医用画像から様々な大きさの病変を適応的に分割する,スケールアウェアな超解像ネットワークを提案する。
提案するネットワークは,他の最先端手法と比較して一貫した改善を実現した。
論文 参考訳(メタデータ) (2023-05-30T14:25:55Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - Variational multichannel multiclass segmentation using unsupervised
lifting with CNNs [0.0]
与えられた画像をK$の異なる領域に分割するフレキシブルなマルチクラスセグメンテーション手法を実装した。
画像の事前分解を目的とした畳み込みニューラルネットワーク(CNN)を用いる。
セグメンテーションの出発点となる情報的特徴写像の抽出に特に重点を置いている。
論文 参考訳(メタデータ) (2023-02-04T18:01:47Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
コントラスト学習とマルチスケールグラフ畳み込みネットワーク(IcicleGCN)を用いた画像クラスタリング手法を提案する。
複数の画像データセットの実験は、最先端のIcicleGCNよりも優れたクラスタリング性能を示している。
論文 参考訳(メタデータ) (2022-07-14T19:16:56Z) - Omni-Seg+: A Scale-aware Dynamic Network for Pathological Image
Segmentation [13.182646724406291]
糸球体の断面領域は、管周囲の毛細血管の64倍の大きさである。
マルチオブジェクト(6つの組織型)とマルチスケール(5Xから40Xスケール)の画像セグメンテーションを実現する,スケール対応の動的ニューラルネットワークであるOmni-Seg+ネットワークを提案する。
論文 参考訳(メタデータ) (2022-06-27T21:09:55Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Automatic Semantic Segmentation of the Lumbar Spine. Clinical
Applicability in a Multi-parametric and Multi-centre MRI study [0.0]
この文書は、最も正確なセグメンテーションを得たニューラルネットワークの設計結果について記述し、分析する。
提案するいくつかの設計は、ベースラインとして使用される標準のU-Netよりも優れており、特に複数のニューラルネットワークの出力が異なる戦略に従って結合されるアンサンブルで使用される場合である。
論文 参考訳(メタデータ) (2021-11-16T17:33:05Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
医用画像のセグメンテーションは、さらなる臨床分析と疾患診断のための信頼性の高い基盤を提供することができる。
既存のCNNベースのほとんどの手法は、正確なオブジェクト境界のない不満足なセグメンテーションマスクを生成する。
本稿では,2次元医用画像分割のための境界認識コンテキストニューラルネットワーク(BA-Net)を定式化する。
論文 参考訳(メタデータ) (2020-05-03T02:35:49Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。