Relativistic Quantum Thermodynamics of Moving Systems
- URL: http://arxiv.org/abs/2006.12331v2
- Date: Sun, 4 Oct 2020 18:19:30 GMT
- Title: Relativistic Quantum Thermodynamics of Moving Systems
- Authors: Nikolaos Papadatos and Charis Anastopoulos
- Abstract summary: We analyse the thermodynamics of a quantum system in a trajectory of constant velocity that interacts with a static thermal bath.
We derive the master equation for the reduced dynamics of the moving quantum system.
A moving heat bath is physically equivalent to a mixture of heat baths at rest, each with a different temperature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyse the thermodynamics of a quantum system in a trajectory of constant
velocity that interacts with a static thermal bath. The latter is modeled by a
massless scalar field in a thermal state. We consider two different couplings
of the moving system to the heat bath, a coupling of the Unruh-DeWitt type and
a coupling that involves the time derivative of the field. We derive the master
equation for the reduced dynamics of the moving quantum system. It has the same
form with the quantum optical master equation, but with different coefficients
that depend on velocity. This master equation has a unique asymptotic state for
each type of coupling, and it is characterized by a well-defined notion of
heat-flow. Our analysis of the second law of thermodynamics leads to a
surprising equivalence: a moving heat bath is physically equivalent to a
mixture of heat baths at rest, each with a different temperature. There is no
unique rule for the Lorentz transformation of temperature. We propose that
Lorentz transformations of thermodynamic states are well defined in an extended
thermodynamic space that is obtained as a convex hull of the standard
thermodynamic space.
Related papers
- Heat currents in qubit systems [0.0]
We present explicit expressions for the heat currents in agreement with the second law of thermodynamics.
We also discuss issues regarding the possible presence of coherences in the steady state.
arXiv Detail & Related papers (2023-01-31T10:41:43Z) - Thermodynamic state convertibility is determined by qubit cooling and
heating [2.9998889086656577]
We show how athermality can be used to heat and cool other quantum systems that are initially at thermal equilibrium.
We then show that the convertibility between quasi-classical resources is fully characterized by their ability to cool and heat qubits.
arXiv Detail & Related papers (2023-01-15T09:00:20Z) - Full counting statistics and coherences: fluctuation symmetry in heat
transport with the Unified quantum master equation [0.0]
We investigate statistics of energy currents through open quantum systems with nearly degenerate levels.
We find that maintaining coherences between nearly degenerate levels is essential for the properly capturing the current and its cumulants.
arXiv Detail & Related papers (2022-12-21T19:01:52Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - The laws of thermodynamics for quantum dissipative systems: A
quasi-equilibrium Helmholtz energy approach [0.0]
We investigate the thermal properties of both an isothermal process and a transition process between the adiabatic and isothermal states.
We find that the thermodynamic efficiency of this machine is zero because the field for the isothermal processes acts as a refrigerator.
arXiv Detail & Related papers (2022-05-23T23:05:53Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.