論文の概要: How fair can we go in machine learning? Assessing the boundaries of
fairness in decision trees
- arxiv url: http://arxiv.org/abs/2006.12399v1
- Date: Mon, 22 Jun 2020 16:28:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 05:14:03.139933
- Title: How fair can we go in machine learning? Assessing the boundaries of
fairness in decision trees
- Title(参考訳): 機械学習はどこまで公平か?
決定木における公平性の境界の評価
- Authors: Ana Valdivia, Javier S\'anchez-Monedero and Jorge Casillas
- Abstract要約: 本稿では,バイアス緩和介入の統計的限界を探索するための最初の方法論を提案する。
機械学習において広く受け入れられている決定木分類器に焦点をあてる。
本手法は, 分類誤差の少ない精度で, 決定木モデルの最適化が可能であることを実験的に結論付けた。
- 参考スコア(独自算出の注目度): 0.12891210250935145
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fair machine learning works have been focusing on the development of
equitable algorithms that address discrimination of certain groups. Yet, many
of these fairness-aware approaches aim to obtain a unique solution to the
problem, which leads to a poor understanding of the statistical limits of bias
mitigation interventions. We present the first methodology that allows to
explore those limits within a multi-objective framework that seeks to optimize
any measure of accuracy and fairness and provides a Pareto front with the best
feasible solutions. In this work, we focus our study on decision tree
classifiers since they are widely accepted in machine learning, are easy to
interpret and can deal with non-numerical information naturally. We conclude
experimentally that our method can optimize decision tree models by being
fairer with a small cost of the classification error. We believe that our
contribution will help stakeholders of sociotechnical systems to assess how far
they can go being fair and accurate, thus serving in the support of enhanced
decision making where machine learning is used.
- Abstract(参考訳): 公正な機械学習の研究は、特定のグループの識別に対処する公平なアルゴリズムの開発に注力してきた。
しかし、これらの公正を意識したアプローチの多くは、バイアス緩和介入の統計的限界の理解が不十分な問題に対するユニークな解決策を得ることを目的としている。
精度と公平性のあらゆる指標を最適化し、最も有効なソリューションをパレートフロントに提供する、多目的フレームワーク内でこれらの限界を探索できる最初の方法論を提示する。
本研究では,機械学習において広く受け入れられており,解釈が容易で,自然に非数値情報を扱うことができるため,決定木分類に焦点をあてる。
本手法は, 分類誤差を小さくすることで, より公平に決定木モデルを最適化できることを実験的に証明した。
我々の貢献は、社会技術システムのステークホルダーが、どれほど公正で正確かを評価するのに役立つと信じており、機械学習が使われている意思決定の強化を支援する。
関連論文リスト
- Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Learning Optimal Fair Classification Trees: Trade-offs Between
Interpretability, Fairness, and Accuracy [7.215903549622416]
最適分類木を学習するための混合整数最適化フレームワークを提案する。
我々は、一般的なデータセットの公平な分類のための最先端アプローチに対して、我々の手法をベンチマークする。
我々の手法は、ほぼ完全に一致した決定を一貫して見つけ出すが、他の手法は滅多にない。
論文 参考訳(メタデータ) (2022-01-24T19:47:10Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Coping with Mistreatment in Fair Algorithms [1.2183405753834557]
教師付き学習環境におけるアルゴリズムの公平性を検討し,等価機会指標の分類器最適化の効果を検討する。
このバイアスを軽減するための概念的にシンプルな方法を提案する。
提案手法を厳密に解析し,その効果を示す実世界データセット上で評価する。
論文 参考訳(メタデータ) (2021-02-22T03:26:06Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
グラフにおけるエッジ予測の課題に対する公平性の問題について検討する。
本稿では,任意のグラフの隣接行列に対して,グループと個々の公正性のトレードオフを伴う埋め込み非依存の補修手順を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:33:13Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Fair Meta-Learning For Few-Shot Classification [7.672769260569742]
バイアスデータに基づいてトレーニングされた機械学習アルゴリズムは、不公平な予測を行う傾向がある。
本稿では,メタトレイン中のバイアスを効果的に軽減する,高速適応型数ショットメタラーニング手法を提案する。
提案手法は,モデル出力のバイアスを効果的に軽減し,不明瞭なタスクに対して精度と公平性の両方を一般化することを実証的に実証する。
論文 参考訳(メタデータ) (2020-09-23T22:33:47Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。