論文の概要: Prediction error-driven memory consolidation for continual learning. On
the case of adaptive greenhouse models
- arxiv url: http://arxiv.org/abs/2006.12616v2
- Date: Mon, 27 Jul 2020 11:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 14:25:56.393551
- Title: Prediction error-driven memory consolidation for continual learning. On
the case of adaptive greenhouse models
- Title(参考訳): 連続学習のための予測誤り駆動型メモリ統合
適応型温室モデルの場合
- Authors: Guido Schillaci and Luis Miranda and Uwe Schmidt
- Abstract要約: この研究は、オンライン学習を行う適応アーキテクチャを示し、破滅的な忘れの問題に直面します。
認知科学と神経科学の証拠に従って、記憶はシステムに記憶されている以前の知識と一致して保持される。
このAIシステムは、温室モデルの学習と移転という、園芸産業における革新的な応用に移行している。
- 参考スコア(独自算出の注目度): 1.414642081068942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents an adaptive architecture that performs online learning and
faces catastrophic forgetting issues by means of episodic memories and
prediction-error driven memory consolidation. In line with evidences from the
cognitive science and neuroscience, memories are retained depending on their
congruency with the prior knowledge stored in the system. This is estimated in
terms of prediction error resulting from a generative model. Moreover, this AI
system is transferred onto an innovative application in the horticulture
industry: the learning and transfer of greenhouse models. This work presents a
model trained on data recorded from research facilities and transferred to a
production greenhouse.
- Abstract(参考訳): 本研究は,オンライン学習を行い,エピソジックメモリと予測エラー駆動型メモリ統合による破滅的な忘れる問題に直面する適応アーキテクチャを提案する。
認知科学と神経科学の証拠に従って、記憶はシステムに記憶されている以前の知識と一致して保持される。
これは生成モデルから生じる予測誤差の観点から推定される。
さらに、このAIシステムは、温室モデルの学習と移転という園芸産業における革新的な応用に移行している。
本研究は、研究施設から記録されたデータに基づいて学習したモデルを生産温室に転送するものである。
関連論文リスト
- Evolvable Psychology Informed Neural Network for Memory Behavior Modeling [2.5258264040936305]
本稿では,PsyINNというメモリ挙動モデリングのためのニューラルネットワークの理論を提案する。
ニューラルネットワークとスパース回帰の微分を組み合わせたフレームワークを構築し、共同最適化を実現する。
4つの大規模実世界のメモリ挙動データセットにおいて,提案手法は予測精度において最先端の手法を超越する。
論文 参考訳(メタデータ) (2024-08-23T01:35:32Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
データから動的システムを特定するために,機械的アプローチと機械学習アプローチを混在させる統一フレームワークを提案する。
モデルエラーがメモリレスであり、大きなメモリを持つ問題に対して、連続時間と離散時間の両方で問題を提起した。
ハイブリッド手法は、データ飢餓、モデルの複雑さの要求、全体的な予測性能において、データ駆動アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-14T12:47:48Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Differential Replication in Machine Learning [0.90238471756546]
我々は、すでにデプロイされた機械学習モデルによって得られた知識を再利用したソリューションを提案する。
これは機械学習モデルの差分複製の背景にある考え方である。
論文 参考訳(メタデータ) (2020-07-15T20:26:49Z) - On the application of transfer learning in prognostics and health
management [0.0]
データ可用性は、研究者や業界の実践者がデータベースの機械学習に頼ることを奨励している。
ディープラーニング、障害診断と診断のためのモデル。
これらのモデルにはユニークな利点がありますが、そのパフォーマンスはトレーニングデータと、そのデータがテストデータをどのように表現しているかに大きく依存しています。
トランスファーラーニング(Transfer Learning)は、前回のトレーニングから学んだことの一部を新しいアプリケーションに転送することで、この問題を改善できるアプローチである。
論文 参考訳(メタデータ) (2020-07-03T23:35:18Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。