A Framework for Fairness in Two-Sided Marketplaces
- URL: http://arxiv.org/abs/2006.12756v1
- Date: Tue, 23 Jun 2020 04:47:37 GMT
- Title: A Framework for Fairness in Two-Sided Marketplaces
- Authors: Kinjal Basu, Cyrus DiCiccio, Heloise Logan, Noureddine El Karoui
- Abstract summary: We propose a definition and develop an end-to-end framework for achieving fairness while building machine learning systems at scale.
We extend prior work to develop an optimization framework that can tackle fairness constraints from both the source and destination sides of the marketplace.
The framework is flexible enough to adapt to different definitions of fairness and can be implemented in very large-scale settings.
- Score: 7.178352722180915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many interesting problems in the Internet industry can be framed as a
two-sided marketplace problem. Examples include search applications and
recommender systems showing people, jobs, movies, products, restaurants, etc.
Incorporating fairness while building such systems is crucial and can have a
deep social and economic impact (applications include job recommendations,
recruiters searching for candidates, etc.). In this paper, we propose a
definition and develop an end-to-end framework for achieving fairness while
building such machine learning systems at scale. We extend prior work to
develop an optimization framework that can tackle fairness constraints from
both the source and destination sides of the marketplace, as well as dynamic
aspects of the problem. The framework is flexible enough to adapt to different
definitions of fairness and can be implemented in very large-scale settings. We
perform simulations to show the efficacy of our approach.
Related papers
- A Human-in-the-Loop Fairness-Aware Model Selection Framework for Complex Fairness Objective Landscapes [37.5215569371757]
ManyFairHPO is a fairness-aware model selection framework that enables practitioners to navigate complex and nuanced fairness objective landscapes.
We demonstrate the effectiveness of ManyFairHPO in balancing multiple fairness objectives, mitigating risks such as self-fulfilling prophecies, and providing interpretable insights to guide stakeholders in making fairness-aware modeling decisions.
arXiv Detail & Related papers (2024-10-17T07:32:24Z) - Social Choice for Heterogeneous Fairness in Recommendation [9.753088666705985]
Algorithmic fairness in recommender systems requires close attention to the needs of a diverse set of stakeholders.
Previous work has often been limited by fixed, single-objective definitions of fairness.
Our work approaches recommendation fairness from the standpoint of computational social choice.
arXiv Detail & Related papers (2024-10-06T17:01:18Z) - Towards Fair Allocation in Social Commerce Platforms [18.76499687585534]
Social commerce platforms are emerging businesses where producers sell products through re-sellers who advertise the products to other customers in their social network.
In this work, we focus on the fairness of such allocations in social commerce platforms and formulate the problem of assigning products to re-sellers as a fair division problem with indivisible items under two-sided cardinality constraints.
Our work systematically explores various well-studied benchmarks of fairness -- including Nash social welfare, envy-freeness up to one item (EF1), and equitability up to one item (EQ1) -- from both theoretical and experimental perspectives.
arXiv Detail & Related papers (2024-02-20T06:58:00Z) - Causal Fairness for Outcome Control [68.12191782657437]
We study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable $Y$ while being fair and equitable.
In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision.
We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this.
arXiv Detail & Related papers (2023-06-08T09:31:18Z) - Can Fairness be Automated? Guidelines and Opportunities for
Fairness-aware AutoML [52.86328317233883]
We present a comprehensive overview of different ways in which fairness-related harm can arise.
We highlight several open technical challenges for future work in this direction.
arXiv Detail & Related papers (2023-03-15T09:40:08Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - HyperFair: A Soft Approach to Integrating Fairness Criteria [17.770533330914102]
We introduce HyperFair, a framework for enforcing soft fairness constraints in a hybrid recommender system.
We propose two ways to employ the methods we introduce: first as an extension of a probabilistic soft logic recommender system template.
We empirically validate our approach by implementing multiple HyperFair hybrid recommenders and compare them to a state-of-the-art fair recommender.
arXiv Detail & Related papers (2020-09-05T05:00:06Z) - Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
Machine Learning [8.436127109155008]
Individuals, as well as organisations, notice, test, and criticize unfair results to hold model designers and deployers accountable.
We offer a framework that assists these groups in mitigating unfair representations stemming from the training datasets.
Our framework relies on two inter-operating adversaries to improve fairness.
arXiv Detail & Related papers (2020-05-14T10:10:19Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
We propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity.
Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations.
arXiv Detail & Related papers (2020-05-02T15:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.