Observation of a superradiant phase transition with emergent cat states
- URL: http://arxiv.org/abs/2207.05512v3
- Date: Tue, 12 Sep 2023 03:19:45 GMT
- Title: Observation of a superradiant phase transition with emergent cat states
- Authors: Ri-Hua Zheng, Wen Ning, Ye-Hong Chen, Jia-Hao L\"u, Li-Tuo Shen, Kai
Xu, Yu-Ran Zhang, Da Xu, Hekang Li, Yan Xia, Fan Wu, Zhen-Biao Yang, Adam
Miranowicz, Neill Lambert, Dongning Zheng, Heng Fan, Franco Nori, and
Shi-Biao Zheng
- Abstract summary: Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the quantum level.
We report an experimental demonstration of the SPT featuring the emergence of a highly nonclassical photonic field.
- Score: 18.801683138820948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superradiant phase transitions (SPTs) are important for understanding
light-matter interactions at the quantum level, and play a central role in
criticality-enhanced quantum sensing. So far, SPTs have been observed in
driven-dissipative systems, but the emergent light fields did not show any
nonclassical characteristic due to the presence of strong dissipation. Here we
report an experimental demonstration of the SPT featuring the emergence of a
highly nonclassical photonic field, realized with a resonator coupled to a
superconducting qubit, implementing the quantum Rabi model. We fully
characterize the light-matter state by Wigner matrix tomography. The measured
matrix elements exhibit quantum interference intrinsic of a photonic mesoscopic
superposition, and reveal light-matter entanglement
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Photon bunching in high-harmonic emission controlled by quantum light [0.0]
Recent theories have laid the groundwork for understanding how quantum-optical properties affect high-field photonics.
We demonstrate a new experimental approach that transduces some properties of a quantum-optical state through a strong-field nonlinearity.
Our results suggest that perturbing strong-field dynamics with quantum-optical states is a viable way to coherently control the generation of these states at short wavelengths.
arXiv Detail & Related papers (2024-04-08T12:53:42Z) - Direct Manipulation of quantum entanglement from the non-Hermitian
nature of light-matter interaction [7.106490464673198]
We report the demonstration of exceptional point (EP) in biphotons by measuring the light-atom interaction as a natural non-Hermitian system.
Such biphoton correlation is tuned within an unprecedented large range from Rabi oscillation to antibunching-exponential-decay.
Our results provide a unique method to realize the controllability of natural non-Hermitian processes without the assistance of artificial photonic structures.
arXiv Detail & Related papers (2023-11-30T03:52:11Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Multiphoton Quantum van Cittert-Zernike Theorem [0.0]
We introduce the quantum van Cittert-Zernike theorem to describe the scattering and interference effects of propagating multiphoton systems.
We show that conditional measurements may enable the all-optical preparation of multiphoton systems with attenuated quantum statistics below the shot-noise limit.
arXiv Detail & Related papers (2022-02-15T01:14:49Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.