A General Class of Transfer Learning Regression without Implementation
Cost
- URL: http://arxiv.org/abs/2006.13228v2
- Date: Thu, 17 Dec 2020 04:08:42 GMT
- Title: A General Class of Transfer Learning Regression without Implementation
Cost
- Authors: Shunya Minami, Song Liu, Stephen Wu, Kenji Fukumizu, Ryo Yoshida
- Abstract summary: We propose a novel framework that unifies and extends existing methods of transfer learning (TL) for regression.
We demonstrate its simplicity, generality, and applicability using various real data applications.
- Score: 18.224991762123576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel framework that unifies and extends existing methods of
transfer learning (TL) for regression. To bridge a pretrained source model to
the model on a target task, we introduce a density-ratio reweighting function,
which is estimated through the Bayesian framework with a specific prior
distribution. By changing two intrinsic hyperparameters and the choice of the
density-ratio model, the proposed method can integrate three popular methods of
TL: TL based on cross-domain similarity regularization, a probabilistic TL
using the density-ratio estimation, and fine-tuning of pretrained neural
networks. Moreover, the proposed method can benefit from its simple
implementation without any additional cost; the regression model can be fully
trained using off-the-shelf libraries for supervised learning in which the
original output variable is simply transformed to a new output variable. We
demonstrate its simplicity, generality, and applicability using various real
data applications.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
We propose a neural network-based distributional regression methodology called engression'
An engression model is generative in the sense that we can sample from the fitted conditional distribution and is also suitable for high-dimensional outcomes.
We show that engression can successfully perform extrapolation under some assumptions such as monotonicity, whereas traditional regression approaches such as least-squares or quantile regression fall short under the same assumptions.
arXiv Detail & Related papers (2023-07-03T08:19:00Z) - Representation Transfer Learning via Multiple Pre-trained models for
Linear Regression [3.5788754401889014]
We consider the problem of learning a linear regression model on a data domain of interest (target) given few samples.
To aid learning, we are provided with a set of pre-trained regression models that are trained on potentially different data domains.
We propose a representation transfer based learning method for constructing the target model.
arXiv Detail & Related papers (2023-05-25T19:35:24Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.