Representation Transfer Learning via Multiple Pre-trained models for
Linear Regression
- URL: http://arxiv.org/abs/2305.16440v2
- Date: Sun, 25 Jun 2023 01:16:32 GMT
- Title: Representation Transfer Learning via Multiple Pre-trained models for
Linear Regression
- Authors: Navjot Singh, Suhas Diggavi
- Abstract summary: We consider the problem of learning a linear regression model on a data domain of interest (target) given few samples.
To aid learning, we are provided with a set of pre-trained regression models that are trained on potentially different data domains.
We propose a representation transfer based learning method for constructing the target model.
- Score: 3.5788754401889014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the problem of learning a linear regression model
on a data domain of interest (target) given few samples. To aid learning, we
are provided with a set of pre-trained regression models that are trained on
potentially different data domains (sources). Assuming a representation
structure for the data generating linear models at the sources and the target
domains, we propose a representation transfer based learning method for
constructing the target model. The proposed scheme is comprised of two phases:
(i) utilizing the different source representations to construct a
representation that is adapted to the target data, and (ii) using the obtained
model as an initialization to a fine-tuning procedure that re-trains the entire
(over-parameterized) regression model on the target data. For each phase of the
training method, we provide excess risk bounds for the learned model compared
to the true data generating target model. The derived bounds show a gain in
sample complexity for our proposed method compared to the baseline method of
not leveraging source representations when achieving the same excess risk,
therefore, theoretically demonstrating the effectiveness of transfer learning
for linear regression.
Related papers
- Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Transfer Learning with Uncertainty Quantification: Random Effect
Calibration of Source to Target (RECaST) [1.8047694351309207]
We develop a statistical framework for model predictions based on transfer learning, called RECaST.
We mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models.
We examine our method's performance in a simulation study and in an application to real hospital data.
arXiv Detail & Related papers (2022-11-29T19:39:47Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - A General Class of Transfer Learning Regression without Implementation
Cost [18.224991762123576]
We propose a novel framework that unifies and extends existing methods of transfer learning (TL) for regression.
We demonstrate its simplicity, generality, and applicability using various real data applications.
arXiv Detail & Related papers (2020-06-23T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.