High-dimensional two-photon interference effects in spatial modes
- URL: http://arxiv.org/abs/2006.13288v3
- Date: Mon, 8 Mar 2021 13:55:59 GMT
- Title: High-dimensional two-photon interference effects in spatial modes
- Authors: Markus Hiekkam\"aki and Robert Fickler
- Abstract summary: We study two-photon interference in multiple transverse-spatial modes along a single beam-path.
We extend the scheme to observe coalescence and anti-coalescence in different three and four-dimensional spatial-mode multiports.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-photon interference is a fundamental quantum optics effect with numerous
applications in quantum information science. Here, we study two-photon
interference in multiple transverse-spatial modes along a single beam-path.
Besides implementing the analogue of the Hong-Ou-Mandel interference using a
two-dimensional spatial-mode splitter, we extend the scheme to observe
coalescence and anti-coalescence in different three and four-dimensional
spatial-mode multiports. The operation within spatial modes, along a single
beam-path, lifts the requirement for interferometric stability and opens up new
pathways of implementing linear optical networks for complex quantum
information tasks.
Related papers
- Multiphoton interference in a single-spatial-mode quantum walk [0.0]
Multiphoton interference is crucial to many photonic quantum technologies.
Here, we implement a quantum walk in a highly stable, low-loss, multiport interferometer with up to 24 ultrafast time bins.
Our results demonstrate that ultrafast time bins are a promising platform to observe large-scale multiphoton interference.
arXiv Detail & Related papers (2024-09-17T18:14:54Z) - N-Way Frequency Beamsplitter for Quantum Photonics [34.82692226532414]
We propose a method of achieving simultaneous, all-to-all coupling between N optical frequency modes.
We experimentally verify the quantum nature of this scheme by demonstrating three-way multiphoton interference.
arXiv Detail & Related papers (2024-05-03T19:36:18Z) - Manipulating multiple optical parametric processes in photonic
topological insulators [6.655289256837963]
We show two distinct edge modes corresponding to different frequency ranges in both sandwich kagome and honeycomb topological designs.
These two topological edge modes enable two types of optical parametric processes through four-wave mixing.
The devices emulating photonic valley-Hall insulators allow the frequency division of two transverse modes.
arXiv Detail & Related papers (2024-01-12T07:29:36Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Interferometric imaging using shared quantum entanglement [0.0]
We report a table-top entanglement-based interferometric imaging technique that utilizes two entangled field modes.
The spatial distribution of a simulated thermal light source is determined by interfering light collected at each aperture.
arXiv Detail & Related papers (2022-12-14T18:25:48Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Higher-dimensional Hong-Ou-Mandel effect and state redistribution with
linear-optical multiports [68.8204255655161]
We expand the two-photon Hong-Ou-Mandel (HOM) effect onto a higher-dimensional set of spatial modes.
We introduce an effect that allows controllable redistribution of quantum states over these modes using directionally unbiased linear-optical four-ports.
arXiv Detail & Related papers (2020-12-16T04:50:39Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.