Multiphoton interference in a single-spatial-mode quantum walk
- URL: http://arxiv.org/abs/2409.11483v1
- Date: Tue, 17 Sep 2024 18:14:54 GMT
- Title: Multiphoton interference in a single-spatial-mode quantum walk
- Authors: Kate L. Fenwick, Jonathan Baker, Guillaume S. Thekkadath, Aaron Z. Goldberg, Khabat Heshami, Philip J. Bustard, Duncan England, Frédéric Bouchard, Benjamin Sussman,
- Abstract summary: Multiphoton interference is crucial to many photonic quantum technologies.
Here, we implement a quantum walk in a highly stable, low-loss, multiport interferometer with up to 24 ultrafast time bins.
Our results demonstrate that ultrafast time bins are a promising platform to observe large-scale multiphoton interference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiphoton interference is crucial to many photonic quantum technologies. In particular, interference forms the basis of optical quantum information processing platforms and can lead to significant computational advantages. It is therefore interesting to study the interference arising from various states of light in large interferometric networks. Here, we implement a quantum walk in a highly stable, low-loss, multiport interferometer with up to 24 ultrafast time bins. This time-bin interferometer comprises a sequence of birefringent crystals which produce pulses separated by 4.3\,ps, all along a single optical axis. Ultrafast Kerr gating in an optical fiber is employed to time-demultiplex the output from the quantum walk. We measure one-, two-, and three-photon interference arising from various input state combinations, including a heralded single-photon state, a thermal state, and an attenuated coherent state at one or more input ports. Our results demonstrate that ultrafast time bins are a promising platform to observe large-scale multiphoton interference.
Related papers
- NOON-state interference in the frequency domain [7.320599749915842]
In this paper, we demonstrate the photon number path entanglement in the frequency domain by implementing a frequency beam splitter.
The two-photon NOON state in a single-mode fiber is generated in the frequency domain, manifesting the two-photon interference with two-fold enhanced resolution.
This successful translation of quantum states in the frequency domain will pave the way toward the discovery of fascinating quantum phenomena and scalable quantum information processing.
arXiv Detail & Related papers (2023-11-01T07:14:27Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Dispersion cancellation in a quantum interferometer with independent
single photons [0.0]
We show that an effect of group velocity dispersion on the two-photon interference can be cancelled if two independent single photons experience the same amount of pulse broadening.
As multi-path quantum interferometers are at the heart of quantum communication, photonic quantum computing, and boson sampling applications, our work should find wide applicability in quantum information science.
arXiv Detail & Related papers (2020-08-15T00:41:33Z) - Spatial entanglement and state engineering via four-photon
Hong-Ou-Mandel interference [0.0]
Entangled systems with a large number of photons provide a platform for streaming technologies based on photonics.
We present a device which operates with four-photons and based on the Hong-Ou-Mandel (HOM) interference.
The presented device allows to maximize the degree of spatial entanglement and generate the highly entangled four-dimensional Bell states.
arXiv Detail & Related papers (2020-07-20T12:51:01Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.