Quantum algorithmic differentiation
- URL: http://arxiv.org/abs/2006.13370v2
- Date: Sat, 16 Jan 2021 21:55:10 GMT
- Title: Quantum algorithmic differentiation
- Authors: Giuseppe Colucci and Francesco Giacosa
- Abstract summary: We present an algorithm to perform algorithmic differentiation in the context of quantum computing.
We present two versions of the algorithm, one which is fully quantum and one which employees a classical step.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present an algorithm to perform algorithmic differentiation
in the context of quantum computing. We present two versions of the algorithm,
one which is fully quantum and one which employees a classical step (hybrid
approach). Since the implementation of elementary functions is already possible
on quantum computers, the scheme that we propose can be easily applied.
Moreover, since some steps (such as the CNOT operator) can (or will be) faster
on a quantum computer than on a classical one, our procedure may ultimately
demonstrate that quantum algorithmic differentiation has an advantage relative
to its classical counterpart.
Related papers
- The Algorithm for Solving Quantum Linear Systems of Equations With Coherent Superposition and Its Extended Applications [8.8400072344375]
We propose two quantum algorithms for solving quantum linear systems of equations with coherent superposition.
The two quantum algorithms can both compute the rank and general solution by one measurement.
Our analysis indicates that the proposed algorithms are mainly suitable for conducting attacks against lightweight symmetric ciphers.
arXiv Detail & Related papers (2024-05-11T03:03:14Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Recovering the original simplicity: succinct and deterministic quantum
algorithm for the welded tree problem [0.0]
This work revisits quantum algorithms for the well-known welded tree problem.
It proposes a very succinct quantum algorithm based on the simplest coined quantum walks.
arXiv Detail & Related papers (2023-04-17T16:03:50Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.