論文の概要: Road surface detection and differentiation considering surface damages
- arxiv url: http://arxiv.org/abs/2006.13377v1
- Date: Tue, 23 Jun 2020 23:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 23:27:01.764473
- Title: Road surface detection and differentiation considering surface damages
- Title(参考訳): 表面損傷を考慮した道路表面の検出と識別
- Authors: Thiago Rateke and Aldo von Wangenheim
- Abstract要約: 本研究では, 路面形状の変動を考慮した道路検出手法を提案し, 舗装面および未舗装面を同定し, 運転安全に関係のある他の道路面の損傷その他の情報を検出する。
この結果から,低コストカメラで撮影した画像を用いても,受動的視覚をこれらの目的に活用できることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A challenge still to be overcome in the field of visual perception for
vehicle and robotic navigation on heavily damaged and unpaved roads is the task
of reliable path and obstacle detection. The vast majority of the researches
have as scenario roads in good condition, from developed countries. These works
cope with few situations of variation on the road surface and even fewer
situations presenting surface damages. In this paper we present an approach for
road detection considering variation in surface types, identifying paved and
unpaved surfaces and also detecting damage and other information on other road
surface that may be relevant to driving safety. We also present a new Ground
Truth with image segmentation, used in our approach and that allowed us to
evaluate our results. Our results show that it is possible to use passive
vision for these purposes, even using images captured with low cost cameras.
- Abstract(参考訳): 車両とロボットナビゲーションの視覚的認識の分野において、大きな損傷を受けた未舗装道路における課題は、信頼できる経路と障害物検出の課題である。
研究の大部分は、先進国からのシナリオ道路として良好な状態にある。
これらの作業は、路面の変動の少ない状況と、表面損傷を示す状況にさえ対処している。
本稿では, 路面の変動を考慮した道路検出手法を提案し, 舗装面と未舗装面を同定し, 運転安全に関係のある他の路面上の損傷その他の情報を検出する。
また,画像分割を用いた新たな基礎的真理を提示することで,結果の評価を可能にした。
この結果から,低コストカメラで撮影した画像を用いても,受動的視覚をこれらの目的に活用できることが示唆された。
関連論文リスト
- Improving classification of road surface conditions via road area extraction and contrastive learning [2.9109581496560044]
画像中の道路面に下流分類モデルのみを集中させるセグメンテーションモデルを導入する。
公開RTKデータセットに対する実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2024-07-19T15:43:16Z) - SmartRSD: An Intelligent Multimodal Approach to Real-Time Road Surface Detection for Safe Driving [4.22695582100076]
本稿では,音声と画像を統合することで路面条件の自動検出を実現するためのマルチモーダル手法を提案する。
本研究は,道路安全の向上と事故リスクの最小化を目的とした聴覚と視覚の融合の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-06-14T15:38:21Z) - Cut-and-Paste with Precision: a Content and Perspective-aware Data Augmentation for Road Damage Detection [5.939858158928473]
道路の損傷は、道路インフラの完全性、安全性、耐久性に重大な課題をもたらす可能性がある。
近年、道路監視アプリケーションにおいて、画像に基づく損傷検出のための様々なデータ駆動手法が研究されている。
本稿では、コンテンツ認識(すなわち、画像中の道路の真の位置を考える)と視点認識(すなわち、注入された損傷と対象画像との視点の差を考慮する)の両面から改善されたカット・アンド・ペースト増強手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T09:06:42Z) - Road Surface Defect Detection -- From Image-based to Non-image-based: A
Survey [7.067243891342157]
この問題に関する文献への関心が高まっており、様々な路面欠陥検出手法の開発に繋がった。
主なアプローチは、画素強度と表面テクスチャを分析して欠陥を特定する画像ベースの手法である。
最近提案した非画像ベースの手法を概観し、これらの手法に関連するいくつかの課題とオープンな問題について論じている。
論文 参考訳(メタデータ) (2024-02-06T15:42:38Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Spatio-Temporal Context Modeling for Road Obstacle Detection [12.464149169670735]
トレーニングデータのレイアウトを用いて、駆動シーンのデータ駆動コンテキスト時間モデルを構築する。
障害物は最先端のオブジェクト検出アルゴリズムによって検出され、結果は生成されたシーンと組み合わせられる。
論文 参考訳(メタデータ) (2023-01-19T07:06:35Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
道路障害物検出技術は,車間距離が大きくなるにつれて障害物の見かけの規模が減少するという事実を無視することを示す。
画像位置毎に仮想物体の見かけの大きさを符号化したスケールマップを演算することでこれを活用できる。
次に、この視点マップを利用して、遠近法に対応する大きさの道路合成物体に注入することで、トレーニングデータを生成する。
論文 参考訳(メタデータ) (2022-10-04T17:48:42Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
本稿では,画像中の偽造顔を効率的に検出する,概念的にシンプルだが効果的な方法を提案する。
提案手法は,画像に関する意味の高い意味情報を提供するセグメンテーションマップに依存する。
提案モデルでは,最先端検出精度と顕著なローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2021-07-13T02:59:31Z) - Detecting Road Obstacles by Erasing Them [101.45116269051692]
画像パッチを選択して周囲の道路テクスチャに塗布し,そのパッチから障害を取り除く傾向にある。
次に、元のパッチと塗布されたパッチとの相違を認識するためにトレーニングされたネットワークを使用し、消去された障害を通知します。
論文 参考訳(メタデータ) (2020-12-25T21:56:36Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
非構造交通環境における視覚的シーン理解のための教師なし適応手法を提案する。
本手法は,車,トラック,二輪車,三輪車,歩行者からなる密集・異種交通を伴う非構造現実シナリオを対象としたものである。
論文 参考訳(メタデータ) (2020-09-22T08:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。