論文の概要: Adversarial Model for Rotated Indoor Scenes Planning
- arxiv url: http://arxiv.org/abs/2006.13527v2
- Date: Tue, 7 Jul 2020 03:43:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 12:49:09.406255
- Title: Adversarial Model for Rotated Indoor Scenes Planning
- Title(参考訳): 回転型屋内シーン計画の逆モデル
- Authors: Xinhan Di, Pengqian Yu, Hong Zhu, Lei Cai, Qiuyan Sheng, Changyu Sun
- Abstract要約: 本研究では,室内室内を回転させた場合の家具配置の逆方向モデルを提案する。
提案モデルでは, 条件付き対数ネットワーク, 回転モジュール, モードモジュール, 回転判別器モジュールを組み合わせる。
提案モデルにより, 寝室, 浴室, 学習室, 畳室の4種類の部屋に対して, 高品質なレイアウトが得られた。
- 参考スコア(独自算出の注目度): 15.025764749987486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an adversarial model for producing furniture layout
for interior scene synthesis when the interior room is rotated. The proposed
model combines a conditional adversarial network, a rotation module, a mode
module, and a rotation discriminator module. As compared with the prior work on
scene synthesis, our proposed three modules enhance the ability of auto-layout
generation and reduce the mode collapse during the rotation of the interior
room. We conduct our experiments on a proposed real-world interior layout
dataset that contains 14400 designs from the professional designers. Our
numerical results demonstrate that the proposed model yields higher-quality
layouts for four types of rooms, including the bedroom, the bathroom, the study
room, and the tatami room.
- Abstract(参考訳): 本稿では,室内室内を回転させた場合の室内シーン合成のための家具レイアウト生成の逆モデルを提案する。
提案モデルは,条件付き逆ネットワーク,回転モジュール,モードモジュール,回転判別モジュールを組み合わせたものである。
シーン合成に関する先行研究と比較して,提案する3つのモジュールは,室内室回転時のモード崩壊を低減し,自動レイアウト生成能力を向上させる。
プロのデザイナーによる14400の設計を含む,現実世界のレイアウトデータセットの提案について実験を行った。
その結果,提案手法は寝室,浴室,学習室,畳室の4種類の部屋において,高品質なレイアウトが得られることがわかった。
関連論文リスト
- Mixed Diffusion for 3D Indoor Scene Synthesis [55.94569112629208]
混合離散連続拡散モデルアーキテクチャであるMiDiffusionを提案する。
シーンレイアウトを2次元のフロアプランとオブジェクトの集合で表現し、それぞれがそのカテゴリ、場所、サイズ、方向で定義する。
実験により,MiDiffusionは床条件下での3次元シーン合成において,最先端の自己回帰モデルや拡散モデルよりもかなり優れていることが示された。
論文 参考訳(メタデータ) (2024-05-31T17:54:52Z) - Towards Aligned Layout Generation via Diffusion Model with Aesthetic Constraints [53.66698106829144]
広い範囲のレイアウト生成タスクを処理する統一モデルを提案する。
このモデルは連続拡散モデルに基づいている。
実験結果から,LACEは高品質なレイアウトを生成することがわかった。
論文 参考訳(メタデータ) (2024-02-07T11:12:41Z) - FurniScene: A Large-scale 3D Room Dataset with Intricate Furnishing Scenes [57.47534091528937]
FurniSceneは、インテリアデザインの専門家による複雑な家具シーンを備えた大規模な3Dルームデータセットである。
具体的には、FurniSceneは11,698の部屋と、89種類のユニークな家具CADモデル39,691種類で構成されている。
室内環境のきめ細かいレイアウト生成に適した2段階拡散シーンモデル(TSDSM)を提案する。
論文 参考訳(メタデータ) (2024-01-07T12:34:45Z) - RoomDesigner: Encoding Anchor-latents for Style-consistent and
Shape-compatible Indoor Scene Generation [26.906174238830474]
室内シーン生成は、空間的に合理的なレイアウトで形状に整合したスタイルの家具配置を作成することを目的としている。
家具をアンカーラテント表現としてエンコードすることで,形状先行を室内シーン生成に組み込む2段階モデルを提案する。
論文 参考訳(メタデータ) (2023-10-16T03:05:19Z) - iBARLE: imBalance-Aware Room Layout Estimation [54.819085005591894]
ルームレイアウト推定は、1つのパノラマからレイアウトを予測する。
実際のデータセットには、レイアウトの複雑さの次元、カメラの位置、シーンの外観の変化など、大きな不均衡がある。
これらの問題に対処するために, imBalance-Aware Room Layout Estimation (iBARLE) フレームワークを提案する。
iBARLEは、(1)外観変化生成(AVG)モジュール、(2)複合構造混合(CSMix)モジュール、(3)勾配に基づくレイアウト目的関数からなる。
論文 参考訳(メタデータ) (2023-08-29T06:20:36Z) - Hierarchical Reinforcement Learning for Furniture Layout in Virtual
Indoor Scenes [2.2481284426718533]
本稿では,仮想現実におけるマルコフ決定プロセス(MDP)としての家具レイアウトタスクについて検討する。
目標は、屋内シーンのバーチャルリアリティーにおける適切な2家具レイアウトを作ることだ。
論文 参考訳(メタデータ) (2022-10-19T09:58:10Z) - ATISS: Autoregressive Transformers for Indoor Scene Synthesis [112.63708524926689]
我々は,合成室内環境を構築するための新しい自己回帰型トランスフォーマーアーキテクチャであるATISSを紹介する。
この定式化は、ATISSが完全に自動的な部屋レイアウト合成を超えて一般的に有用になるため、より自然なものであると我々は主張する。
本モデルは,ラベル付き3Dバウンディングボックスのみを監督として,自動回帰生成モデルとしてエンドツーエンドで訓練されている。
論文 参考訳(メタデータ) (2021-10-07T17:58:05Z) - Deep Reinforcement Learning for Producing Furniture Layout in Indoor
Scenes [3.4447129363520332]
工業用インテリアデザインのプロセスでは、プロのデザイナーが部屋の家具のサイズと位置を計画し、販売に適したデザインを実現する。
深層強化学習によって解決されるマルコフ決定プロセス(MDP)として、インテリアシーン設計タスクを探索します。
本研究では,提案モデルが最新モデルと比較して高い品質のレイアウトが得られることを実証した。
論文 参考訳(メタデータ) (2021-01-19T04:38:58Z) - End-to-end Generative Floor-plan and Layout with Attributes and Relation
Graph [6.259404056725123]
インテリアシーン合成のための家具レイアウトをランダムベクターから作成するためのエンドエンドモデルを提案する。
提案モデルは部屋の条件付きフロアプランモジュールと部屋の条件付きグラフィカルフロアプランモジュールと条件付きレイアウトモジュールを組み合わせたものである。
我々は,プロのデザイナーによる191208ドルのデザインを含む,現実世界のレイアウトデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-12-15T07:37:05Z) - Deep Layout of Custom-size Furniture through Multiple-domain Learning [6.259404056725123]
提案されたモデルは,ディープレイアウトモジュール,ドメイン注意モジュール,次元ドメイン転送モジュール,エンドエンドトレーニングにおけるカスタムサイズのモジュールを組み合わせたものだ。
私たちは、プロのデザイナーによる7万10700ドルのデザインを含む、現実世界の内部レイアウトデータセットで実験を行います。
論文 参考訳(メタデータ) (2020-12-15T07:32:13Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。