論文の概要: Generative causal explanations of black-box classifiers
- arxiv url: http://arxiv.org/abs/2006.13913v2
- Date: Thu, 22 Oct 2020 17:26:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 09:06:37.420148
- Title: Generative causal explanations of black-box classifiers
- Title(参考訳): ブラックボックス分類器の生成因果説明
- Authors: Matthew O'Shaughnessy, Gregory Canal, Marissa Connor, Mark Davenport,
Christopher Rozell
- Abstract要約: 学習した低次元データ表現に基づいてブラックボックス分類器の因果後説明を生成する手法を開発した。
次に,画像認識タスクにおける本手法の実用性を示す。
- 参考スコア(独自算出の注目度): 15.029443432414947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a method for generating causal post-hoc explanations of black-box
classifiers based on a learned low-dimensional representation of the data. The
explanation is causal in the sense that changing learned latent factors
produces a change in the classifier output statistics. To construct these
explanations, we design a learning framework that leverages a generative model
and information-theoretic measures of causal influence. Our objective function
encourages both the generative model to faithfully represent the data
distribution and the latent factors to have a large causal influence on the
classifier output. Our method learns both global and local explanations, is
compatible with any classifier that admits class probabilities and a gradient,
and does not require labeled attributes or knowledge of causal structure. Using
carefully controlled test cases, we provide intuition that illuminates the
function of our objective. We then demonstrate the practical utility of our
method on image recognition tasks.
- Abstract(参考訳): 学習した低次元データ表現に基づいてブラックボックス分類器の因果後説明を生成する手法を開発した。
この説明は、学習潜在因子の変化が分類器出力統計の変化をもたらすという意味で因果関係である。
これらの説明を構築するために、生成モデルと因果影響の情報理論的尺度を活用した学習フレームワークを設計する。
我々の目的関数は、生成モデルがデータ分布を忠実に表現し、潜在因子が分類器出力に大きな因果関係を持つように促す。
本手法は,グローバルな説明と局所的な説明の両方を学習し,クラス確率と勾配を許容する分類器と互換性があり,ラベル付き属性や因果構造に関する知識を必要としない。
慎重に制御されたテストケースを用いて、目的の機能を照らす直感を提供する。
次に,画像認識タスクにおける本手法の実用性を示す。
関連論文リスト
- Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Causal Generative Explainers using Counterfactual Inference: A Case
Study on the Morpho-MNIST Dataset [5.458813674116228]
本稿では,視覚的特徴と因果的要因の影響を研究するために,生成的対実的推論手法を提案する。
我々は,OmnixAIオープンソースツールキットの視覚的説明手法を用いて,提案手法との比較を行った。
このことから,本手法は因果的データセットの解釈に極めて適していることが示唆された。
論文 参考訳(メタデータ) (2024-01-21T04:07:48Z) - A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
因果表現学習(Causal representation learning)は、データセットの変動の要因は、実際には因果関係にあると主張している。
本稿では,遅延付加雑音モデルを用いたデータ生成過程を考慮した,教師なし表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-11T18:12:05Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
我々は,ブラックボックスの分類を正当化する対照的な説明を提供する,ポストホックモデルXAI手法を提案する。
CLIMAXと呼ばれる手法は,局所的な分類法に基づく。
LIME, BayLIME, SLIMEなどのベースラインと比較して, 一貫性が向上することを示す。
論文 参考訳(メタデータ) (2023-07-02T22:52:58Z) - Streamlining models with explanations in the learning loop [0.0]
いくつかの説明可能なAIメソッドにより、機械学習ユーザーはブラックボックスモデルの分類プロセスに関する洞察を得ることができる。
この情報を利用して機能エンジニアリングフェーズを設計し、説明と機能バリューを組み合わせる。
論文 参考訳(メタデータ) (2023-02-15T16:08:32Z) - Explaining Image Classifiers Using Contrastive Counterfactuals in
Generative Latent Spaces [12.514483749037998]
本稿では,画像分類器の因果的かつ解釈可能な反事実的説明を生成する新しい手法を提案する。
我々は、ブラックボックス分類器のグローバルな説明として、コントラスト的かつ因果的満足度と必要性スコアを得るために、このフレームワークを使用します。
論文 参考訳(メタデータ) (2022-06-10T17:54:46Z) - Causal Transportability for Visual Recognition [70.13627281087325]
画像とラベルの関連性は、設定間では転送できないため、標準分類器がフェールすることを示す。
次に、すべての共起源を摂食する因果効果が、ドメイン間で不変であることを示す。
これにより、画像分類における因果効果を推定するアルゴリズムを開発する動機付けとなる。
論文 参考訳(メタデータ) (2022-04-26T15:02:11Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
分類モデルの対照的説明を生成する手法を提案する。
本手法は潜在空間へのモデル表現の投影に基づいている。
本研究は,モデル決定のより正確できめ細かな解釈性を提供するためのラベルコントラスト的説明の能力に光を当てた。
論文 参考訳(メタデータ) (2021-03-02T00:36:45Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。