論文の概要: Towards Differentially Private Text Representations
- arxiv url: http://arxiv.org/abs/2006.14170v1
- Date: Thu, 25 Jun 2020 04:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 02:35:51.358165
- Title: Towards Differentially Private Text Representations
- Title(参考訳): テキスト表現の個人化に向けて
- Authors: Lingjuan Lyu, Yitong Li, Xuanli He, Tong Xiao
- Abstract要約: 信頼できないサーバ環境下で新しいディープラーニングフレームワークを開発する。
乱数化モジュールに対して、プライバシーパラメータ$epsilon$の精度への影響を低減するために、新しいローカル微分プライベート(LDP)プロトコルを提案する。
分析と実験により、我々のフレームワークは、非プライベートなフレームワークや既存のLDPプロトコルと同等またはそれ以上のパフォーマンスを提供することが示された。
- 参考スコア(独自算出の注目度): 52.64048365919954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most deep learning frameworks require users to pool their local data or model
updates to a trusted server to train or maintain a global model. The assumption
of a trusted server who has access to user information is ill-suited in many
applications. To tackle this problem, we develop a new deep learning framework
under an untrusted server setting, which includes three modules: (1) embedding
module, (2) randomization module, and (3) classifier module. For the
randomization module, we propose a novel local differentially private (LDP)
protocol to reduce the impact of privacy parameter $\epsilon$ on accuracy, and
provide enhanced flexibility in choosing randomization probabilities for LDP.
Analysis and experiments show that our framework delivers comparable or even
better performance than the non-private framework and existing LDP protocols,
demonstrating the advantages of our LDP protocol.
- Abstract(参考訳): ほとんどのディープラーニングフレームワークでは、グローバルなモデルをトレーニングまたは維持するために、ローカルデータをプールしたり、信頼できるサーバにモデル更新をする必要がある。
ユーザ情報にアクセス可能な信頼できるサーバの仮定は多くのアプリケーションで不適当である。
この問題を解決するために,(1)埋め込みモジュール,(2)ランダム化モジュール,(3)分類モジュールの3つのモジュールを含む,信頼できないサーバ設定下での新たなディープラーニングフレームワークを開発した。
乱数化モジュールに対して、プライバシーパラメータ$\epsilon$の精度への影響を低減し、LDPのランダム化確率を選択する際の柔軟性を向上させるために、新しいローカル微分プライベート(LDP)プロトコルを提案する。
分析と実験により、我々のフレームワークは、非プライベートなフレームワークや既存のLDPプロトコルと同等またはそれ以上の性能を提供し、我々のLDPプロトコルの利点を実証している。
関連論文リスト
- CURE: Privacy-Preserving Split Learning Done Right [1.388112207221632]
このシナリオには、同型暗号化(HE)ベースのソリューションが存在するが、しばしば禁止的な計算負担を課す。
CUREは、モデルとデータのサーバ側のみを暗号化する新しいシステムである。
CUREは、実行時の16倍の効率で、平文SLと同等の精度を実現できることを示す。
論文 参考訳(メタデータ) (2024-07-12T04:10:19Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation [15.023077875990614]
フェデレートラーニング(FL)は、クライアントがローカルデータをサーバと共有することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
差分プライバシ(DP)は、クライアントのコントリビューションにランダム性を加えるメカニズムを備えた、正式なプライバシ保証を提供することによって、そのようなリークに対処する。
差分プライバシーと組み合わせてDP-DyLoRAと呼ぶ適応手法を提案する。
論文 参考訳(メタデータ) (2024-05-10T10:10:37Z) - FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity [82.5448598805968]
我々は、フェデレートされたパーソナライズされたプライバシフレンドリーなネットワークプルーニングを表現する、効果的で適応可能なフェデレーションフレームワークであるFedP3を提案する。
我々は、FedP3とその局所微分プライベート変種DP-FedP3の理論解釈を提供し、それらの効率を理論的に検証する。
論文 参考訳(メタデータ) (2024-04-15T14:14:05Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Blockchain-based Optimized Client Selection and Privacy Preserved
Framework for Federated Learning [2.4201849657206496]
フェデレートラーニング(Federated Learning)は、大規模ニューラルネットワークモデルをトレーニングする分散メカニズムで、複数のクライアントが参加する。
この機能により、フェデレーション学習はデータのプライバシー問題に対するセキュアなソリューションとみなされる。
ブロックチェーンベースの最適化クライアント選択とプライバシ保護フレームワークを提案しました。
論文 参考訳(メタデータ) (2023-07-25T01:35:51Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
本稿では,大規模なトランスフォーマーベース言語モデルのためのSDPを実現するための,シンプルで効果的なジャストファイントゥンツースプライバシ機構を提案する。
実験により, カナリア挿入攻撃に対して頑健でありながら, 高い性能が得られた。
論文 参考訳(メタデータ) (2022-04-15T22:36:55Z) - EFMVFL: An Efficient and Flexible Multi-party Vertical Federated
Learning without a Third Party [7.873139977724476]
フェデレートラーニング(Federated Learning)は、複数の参加者が、ローカルデータを開示することなく、共同でモデリングを行うことを可能にする。
EFMVFLと呼ばれるサードパーティを使わずに新しいVFLフレームワークを提案する。
私たちのフレームワークはセキュアで、より効率的で、複数の参加者に拡張が容易です。
論文 参考訳(メタデータ) (2022-01-17T07:06:21Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
フェデレートラーニングは、複数のクライアントが協力してグローバルに共有されたモデルを学ぶことを可能にする。
クライアント側とサーバ側の両方の後方部を近似するために,オンラインラプラス近似を用いた新しいFLフレームワークを提案する。
提案手法の利点を実証し,いくつかのベンチマークで最新の結果を得た。
論文 参考訳(メタデータ) (2021-02-03T08:36:58Z) - LDP-Fed: Federated Learning with Local Differential Privacy [14.723892247530234]
ローカルディファレンシャルプライバシ(LDP)を用いた正式なプライバシ保証を備えた新しいフェデレーション学習システム LDP-Fed を提案する。
既存のLPPプロトコルは、主に単一の数値またはカテゴリ値の収集におけるデータのプライバシを確保するために開発されている。
連合学習モデルでは、各参加者からパラメータの更新を反復的に収集する。
論文 参考訳(メタデータ) (2020-06-05T19:15:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。