論文の概要: FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity
- arxiv url: http://arxiv.org/abs/2404.09816v1
- Date: Mon, 15 Apr 2024 14:14:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 22:07:08.310706
- Title: FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity
- Title(参考訳): FedP3:フェデレートされたパーソナライズされたプライバシフレンドリーなネットワーク
- Authors: Kai Yi, Nidham Gazagnadou, Peter Richtárik, Lingjuan Lyu,
- Abstract要約: 我々は、フェデレートされたパーソナライズされたプライバシフレンドリーなネットワークプルーニングを表現する、効果的で適応可能なフェデレーションフレームワークであるFedP3を提案する。
我々は、FedP3とその局所微分プライベート変種DP-FedP3の理論解釈を提供し、それらの効率を理論的に検証する。
- 参考スコア(独自算出の注目度): 82.5448598805968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interest in federated learning has surged in recent research due to its unique ability to train a global model using privacy-secured information held locally on each client. This paper pays particular attention to the issue of client-side model heterogeneity, a pervasive challenge in the practical implementation of FL that escalates its complexity. Assuming a scenario where each client possesses varied memory storage, processing capabilities and network bandwidth - a phenomenon referred to as system heterogeneity - there is a pressing need to customize a unique model for each client. In response to this, we present an effective and adaptable federated framework FedP3, representing Federated Personalized and Privacy-friendly network Pruning, tailored for model heterogeneity scenarios. Our proposed methodology can incorporate and adapt well-established techniques to its specific instances. We offer a theoretical interpretation of FedP3 and its locally differential-private variant, DP-FedP3, and theoretically validate their efficiencies.
- Abstract(参考訳): フェデレートラーニングへの関心は、各クライアントがローカルに保持するプライバシー保護情報を用いてグローバルモデルをトレーニングするユニークな能力によって、近年急速に高まっている。
本稿では,複雑性を増大させるFLの実装において,クライアント側モデルの不均一性の問題に特に注目する。
各クライアントが様々なメモリストレージ、処理能力、ネットワーク帯域幅を持つシナリオ(システム不均一性と呼ばれる現象)を仮定すると、各クライアントにユニークなモデルをカスタマイズする必要がある。
これに対応して、フェデレーションパーソナライズされたプライバシフレンドリーなネットワークプランニングを表現した、効果的で適応可能なフェデレーションフレームワークであるFedP3を提案する。
提案手法は, 確立した手法を具体例に取り入れ, 適用することができる。
我々は、FedP3とその局所微分プライベート変種DP-FedP3の理論解釈を提供し、それらの効率を理論的に検証する。
関連論文リスト
- Personalized federated learning based on feature fusion [2.943623084019036]
フェデレートされた学習により、分散クライアントは、クライアントのプライバシを保護するためにデータをローカルに保存しながら、トレーニングで協力することができる。
pFedPMと呼ばれる個人化学習手法を提案する。
このプロセスでは、従来のグラデーションアップロードを機能アップロードに置き換え、通信コストを削減し、異種クライアントモデルを可能にする。
論文 参考訳(メタデータ) (2024-06-24T12:16:51Z) - Towards Personalized Federated Learning via Heterogeneous Model
Reassembly [84.44268421053043]
pFedHRは、異種モデルの再組み立てを利用して、パーソナライズされたフェデレーション学習を実現するフレームワークである。
pFedHRは、動的に多様なパーソナライズされたモデルを自動生成する。
論文 参考訳(メタデータ) (2023-08-16T19:36:01Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Performative Federated Learning: A Solution to Model-Dependent and
Heterogeneous Distribution Shifts [24.196279060605402]
複数のクライアントとサーバからなる連合学習(FL)システムについて検討する。
クライアントのデータが静的であると仮定する従来のFLフレームワークとは異なり、クライアントのデータ分散がデプロイされた決定モデルによって再生成されるシナリオを考察する。
論文 参考訳(メタデータ) (2023-05-08T23:29:24Z) - PaDPaF: Partial Disentanglement with Partially-Federated GANs [5.195669033269619]
フェデレーテッド・ラーニングは、多くの潜在的な現実のアプリケーションで人気のある機械学習パラダイムとなっている。
本研究では,グローバルクライアント非依存とローカルクライアント固有の生成モデルを組み合わせた新しいアーキテクチャを提案する。
提案モデルでは,グローバルな一貫した表現を暗黙的に切り離すことで,プライバシーとパーソナライゼーションを実現する。
論文 参考訳(メタデータ) (2022-12-07T18:28:54Z) - Personalizing or Not: Dynamically Personalized Federated Learning with
Incentives [37.42347737911428]
個人データを共有せずにパーソナライズされたモデルを学習するためのパーソナライズド・フェデレーション・ラーニング(FL)を提案する。
パーソナライズレートは、パーソナライズされたモデルのトレーニングを希望する顧客の割合として測定され、フェデレーションされた設定に導入され、DyPFLを提案する。
この技術は、クライアントがローカルモデルをパーソナライズすることへのインセンティブを与えると同時に、より優れたパフォーマンスでグローバルモデルを採用できるようにする。
論文 参考訳(メタデータ) (2022-08-12T09:51:20Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - PFA: Privacy-preserving Federated Adaptation for Effective Model
Personalization [6.66389628571674]
フェデレートラーニング(FL)は、プライバシを改善した分散機械学習パラダイムとして普及している。
本稿では,より優れたパーソナライズ結果を得るために,訓練されたモデルをフェデレーション方式で適応させることを目的とした,フェデレーション適応と呼ばれる新しい概念を提案する。
PFA(Privacy-preserving Federated Adaptation)を実現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-02T08:07:34Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML)は、クライアントが汎用モデルとパーソナライズされたモデルを独立してトレーニングすることを可能にする。
実験により、FMLは一般的なフェデレート学習環境よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-27T09:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。